Predicting Turbulent Boundary Layer Wall Pressure Fluctuations In Adverse Pressure Gradients
Download Predicting Turbulent Boundary Layer Wall Pressure Fluctuations In Adverse Pressure Gradients full books in PDF, epub, and Kindle. Read online free Predicting Turbulent Boundary Layer Wall Pressure Fluctuations In Adverse Pressure Gradients ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Manuel García-Villalba |
Publisher | : Springer Nature |
Total Pages | : 478 |
Release | : 2020-05-09 |
Genre | : Technology & Engineering |
ISBN | : 3030428222 |
This book gathers the proceedings of the 12th instalment in the bi-annual Workshop series on Direct and Large Eddy Simulation (DLES), which began in 1994 and focuses on modern techniques used to simulate turbulent flows based on the partial or full resolution of the instantaneous turbulent flow structure. With the rapidly expanding capacities of modern computers, this approach has attracted more and more interest over the years and will undoubtedly be further enhanced and applied in the future. Hybrid modelling techniques based on a combination of LES and RANS approaches also fall into this category and are covered as well. The goal of the Workshop was to share the state of the art in DNS, LES and related techniques for the computation and modelling of turbulent and transitional flows. The respective papers highlight the latest advances in the prediction, understanding and control of turbulent flows in academic and industrial applications.
Author | : Hermann Schlichting (Deceased) |
Publisher | : Springer |
Total Pages | : 814 |
Release | : 2016-10-04 |
Genre | : Technology & Engineering |
ISBN | : 366252919X |
This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.
Author | : Andreas Dillmann |
Publisher | : Springer Nature |
Total Pages | : 862 |
Release | : 2019-09-26 |
Genre | : Technology & Engineering |
ISBN | : 3030252531 |
This book gathers contributions to the 21st biannual symposium of the German Aerospace Aerodynamics Association (STAB) and the German Society for Aeronautics and Astronautics (DGLR). The individual chapters reflect ongoing research conducted by the STAB members in the field of numerical and experimental fluid mechanics and aerodynamics, mainly for (but not limited to) aerospace applications, and cover both nationally and EC-funded projects. Special emphasis is given to collaborative research projects conducted by German scientists and engineers from universities, research-establishments and industries. By addressing a number of cutting-edge applications, together with the relevant physical and mathematics fundamentals, the book provides readers with a comprehensive overview of the current research work in the field. The book’s primary emphasis is on aerodynamic research in aeronautics and astronautics, and in ground transportation and energy as well.
Author | : Dimokratis G.E. Grigoriadis |
Publisher | : Springer |
Total Pages | : 523 |
Release | : 2017-10-06 |
Genre | : Technology & Engineering |
ISBN | : 3319632124 |
This book addresses nearly all aspects of the state of the art in LES & DNS of turbulent flows, ranging from flows in biological systems and the environment to external aerodynamics, domestic and centralized energy production, combustion, propulsion as well as applications of industrial interest. Following the advances in increased computational power and efficiency, several contributions are devoted to LES & DNS of challenging applications, mainly in the area of turbomachinery, including flame modeling, combustion processes and aeroacoustics. The book includes work presented at the tenth Workshop on 'Direct and Large-Eddy Simulation' (DLES-10), which was hosted in Cyprus by the University of Cyprus, from May 27 to 29, 2015. The goal of the workshop was to establish a state of the art in DNS, LES and related techniques for the computation and modeling of turbulent and transitional flows. The book is of interest to scientists and engineers, both in the early stages of their career and at a more senior level.
Author | : Meinhard T. Schobeiri |
Publisher | : Springer Science & Business Media |
Total Pages | : 517 |
Release | : 2010-03-27 |
Genre | : Technology & Engineering |
ISBN | : 3642115942 |
The contents of this book covers the material required in the Fluid Mechanics Graduate Core Course (MEEN-621) and in Advanced Fluid Mechanics, a Ph. D-level elective course (MEEN-622), both of which I have been teaching at Texas A&M University for the past two decades. While there are numerous undergraduate fluid mechanics texts on the market for engineering students and instructors to choose from, there are only limited texts that comprehensively address the particular needs of graduate engineering fluid mechanics courses. To complement the lecture materials, the instructors more often recommend several texts, each of which treats special topics of fluid mechanics. This circumstance and the need to have a textbook that covers the materials needed in the above courses gave the impetus to provide the graduate engineering community with a coherent textbook that comprehensively addresses their needs for an advanced fluid mechanics text. Although this text book is primarily aimed at mechanical engineering students, it is equally suitable for aerospace engineering, civil engineering, other engineering disciplines, and especially those practicing professionals who perform CFD-simulation on a routine basis and would like to know more about the underlying physics of the commercial codes they use. Furthermore, it is suitable for self study, provided that the reader has a sufficient knowledge of calculus and differential equations. In the past, because of the lack of advanced computational capability, the subject of fluid mechanics was artificially subdivided into inviscid, viscous (laminar, turbulent), incompressible, compressible, subsonic, supersonic and hypersonic flows.
Author | : Bernhard Stoevesandt |
Publisher | : Springer Nature |
Total Pages | : 1495 |
Release | : 2022-08-04 |
Genre | : Technology & Engineering |
ISBN | : 3030313077 |
This handbook provides both a comprehensive overview and deep insights on the state-of-the-art methods used in wind turbine aerodynamics, as well as their advantages and limits. The focus of this work is specifically on wind turbines, where the aerodynamics are different from that of other fields due to the turbulent wind fields they face and the resultant differences in structural requirements. It gives a complete picture of research in the field, taking into account the different approaches which are applied. This book would be useful to professionals, academics, researchers and students working in the field.
Author | : D. Laurence |
Publisher | : Elsevier |
Total Pages | : 975 |
Release | : 1999-04-14 |
Genre | : Science |
ISBN | : 0080530982 |
These proceedings contain the papers presented at the 4th International Symposium on Engineering Turbulence Modelling and Measurements held at Ajaccio, Corsica, France from 24-26 May 1999. It follows three previous conferences on the topic of engineering turbulence modelling and measurements. The purpose of this series of symposia is to provide a forum for presenting and discussing new developments in the area of turbulence modelling and measurements, with particular emphasis on engineering-related problems. Turbulence is still one of the key issues in tackling engineering flow problems. As powerful computers and accurate numerical methods are now available for solving the flow equations, and since engineering applications nearly always involve turbulence effects, the reliability of CFD analysis depends more and more on the performance of the turbulence models. Successful simulation of turbulence requires the understanding of the complex physical phenomena involved and suitable models for describing the turbulent momentum, heat and mass transfer. For the understanding of turbulence phenomena, experiments are indispensable, but they are equally important for providing data for the development and testing of turbulence models and hence for CFD software validation.
Author | : National Research Council |
Publisher | : National Academies Press |
Total Pages | : 1024 |
Release | : 2002-01-01 |
Genre | : Science |
ISBN | : 0309254671 |
"Vive la Revolution!" was the theme of the Twenty-Third Symposium on Naval Hydrodynamics held in Val de Reuil, France, from September 17-22, 2000 as more than 140 experts in ship design, construction, and operation came together to exchange naval research developments. The forum encouraged both formal and informal discussion of presented papers, and the occasion provides an opportunity for direct communication between international peers. This book includes sixty-three papers presented at the symposium which was organized jointly by the Office of Naval Research, the National Research Council (Naval Studies Board), and the Bassin d'Essais des Carènes. This book includes the ten topical areas discussed at the symposium: wave-induced motions and loads, hydrodynamics in ship design, propulsor hydrodynamics and hydroacoustics, CFD validation, viscous ship hydrodynamics, cavitation and bubbly flow, wave hydrodynamics, wake dynamics, shallow water hydrodynamics, and fluid dynamics in the naval context.
Author | : John S. Serafini |
Publisher | : |
Total Pages | : 88 |
Release | : 1963 |
Genre | : Fluid dynamics |
ISBN | : |
This experimental study was carried out at a free-stream Mach number of 0.6 and a Reynolds number per foot of 3.45 x 106. The magnitudes of the wall-pressure fluctuations agree with the Lilley-Hodgson theoretical results. Space-time correlations of the wall-pressure fluctuations generally agree with Willmarth's results for longitudinal separation distances. The convection velocity of the fluctuations is found to increase with increasing separation distances, and its significance is explained. Measurements with the longitudinal component of the velocity fluctuations indicate that the contributions to the wall-pressure fluctuations are from two regions, an inner region near the wall and an outer region linked with the intermittency.
Author | : Alexander J. Smits |
Publisher | : Springer Science & Business Media |
Total Pages | : 418 |
Release | : 2006-05-11 |
Genre | : Science |
ISBN | : 0387263055 |
A good understanding of turbulent compressible flows is essential to the design and operation of high-speed vehicles. Such flows occur, for example, in the external flow over the surfaces of supersonic aircraft, and in the internal flow through the engines. Our ability to predict the aerodynamic lift, drag, propulsion and maneuverability of high-speed vehicles is crucially dependent on our knowledge of turbulent shear layers, and our understanding of their behavior in the presence of shock waves and regions of changing pressure. Turbulent Shear Layers in Supersonic Flow provides a comprehensive introduction to the field, and helps provide a basis for future work in this area. Wherever possible we use the available experimental work, and the results from numerical simulations to illustrate and develop a physical understanding of turbulent compressible flows.