Practical Machine Learning A New Look At Anomaly Detection
Download Practical Machine Learning A New Look At Anomaly Detection full books in PDF, epub, and Kindle. Read online free Practical Machine Learning A New Look At Anomaly Detection ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Ted Dunning |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 65 |
Release | : 2014-07-21 |
Genre | : Computers |
ISBN | : 1491914181 |
Finding Data Anomalies You Didn't Know to Look For Anomaly detection is the detective work of machine learning: finding the unusual, catching the fraud, discovering strange activity in large and complex datasets. But, unlike Sherlock Holmes, you may not know what the puzzle is, much less what “suspects” you’re looking for. This O’Reilly report uses practical examples to explain how the underlying concepts of anomaly detection work. From banking security to natural sciences, medicine, and marketing, anomaly detection has many useful applications in this age of big data. And the search for anomalies will intensify once the Internet of Things spawns even more new types of data. The concepts described in this report will help you tackle anomaly detection in your own project. Use probabilistic models to predict what’s normal and contrast that to what you observe Set an adaptive threshold to determine which data falls outside of the normal range, using the t-digest algorithm Establish normal fluctuations in complex systems and signals (such as an EKG) with a more adaptive probablistic model Use historical data to discover anomalies in sporadic event streams, such as web traffic Learn how to use deviations in expected behavior to trigger fraud alerts
Author | : Dhruba Kumar Bhattacharyya |
Publisher | : CRC Press |
Total Pages | : 364 |
Release | : 2013-06-18 |
Genre | : Computers |
ISBN | : 146658209X |
With the rapid rise in the ubiquity and sophistication of Internet technology and the accompanying growth in the number of network attacks, network intrusion detection has become increasingly important. Anomaly-based network intrusion detection refers to finding exceptional or nonconforming patterns in network traffic data compared to normal behavi
Author | : Valliappa Lakshmanan |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 481 |
Release | : 2021-07-21 |
Genre | : Computers |
ISBN | : 1098102339 |
This practical book shows you how to employ machine learning models to extract information from images. ML engineers and data scientists will learn how to solve a variety of image problems including classification, object detection, autoencoders, image generation, counting, and captioning with proven ML techniques. This book provides a great introduction to end-to-end deep learning: dataset creation, data preprocessing, model design, model training, evaluation, deployment, and interpretability. Google engineers Valliappa Lakshmanan, Martin Görner, and Ryan Gillard show you how to develop accurate and explainable computer vision ML models and put them into large-scale production using robust ML architecture in a flexible and maintainable way. You'll learn how to design, train, evaluate, and predict with models written in TensorFlow or Keras. You'll learn how to: Design ML architecture for computer vision tasks Select a model (such as ResNet, SqueezeNet, or EfficientNet) appropriate to your task Create an end-to-end ML pipeline to train, evaluate, deploy, and explain your model Preprocess images for data augmentation and to support learnability Incorporate explainability and responsible AI best practices Deploy image models as web services or on edge devices Monitor and manage ML models
Author | : Shai Shalev-Shwartz |
Publisher | : Cambridge University Press |
Total Pages | : 415 |
Release | : 2014-05-19 |
Genre | : Computers |
ISBN | : 1107057132 |
Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.
Author | : Sridhar Alla |
Publisher | : Apress |
Total Pages | : 427 |
Release | : 2019-10-10 |
Genre | : Computers |
ISBN | : 1484251776 |
Utilize this easy-to-follow beginner's guide to understand how deep learning can be applied to the task of anomaly detection. Using Keras and PyTorch in Python, the book focuses on how various deep learning models can be applied to semi-supervised and unsupervised anomaly detection tasks. This book begins with an explanation of what anomaly detection is, what it is used for, and its importance. After covering statistical and traditional machine learning methods for anomaly detection using Scikit-Learn in Python, the book then provides an introduction to deep learning with details on how to build and train a deep learning model in both Keras and PyTorch before shifting the focus to applications of the following deep learning models to anomaly detection: various types of Autoencoders, Restricted Boltzmann Machines, RNNs & LSTMs, and Temporal Convolutional Networks. The book explores unsupervised and semi-supervised anomaly detection along with the basics of time series-based anomaly detection. By the end of the book you will have a thorough understanding of the basic task of anomaly detection as well as an assortment of methods to approach anomaly detection, ranging from traditional methods to deep learning. Additionally, you are introduced to Scikit-Learn and are able to create deep learning models in Keras and PyTorch. What You Will LearnUnderstand what anomaly detection is and why it is important in today's world Become familiar with statistical and traditional machine learning approaches to anomaly detection using Scikit-Learn Know the basics of deep learning in Python using Keras and PyTorch Be aware of basic data science concepts for measuring a model's performance: understand what AUC is, what precision and recall mean, and more Apply deep learning to semi-supervised and unsupervised anomaly detection Who This Book Is For Data scientists and machine learning engineers interested in learning the basics of deep learning applications in anomaly detection
Author | : Marc Peter Deisenroth |
Publisher | : Cambridge University Press |
Total Pages | : 392 |
Release | : 2020-04-23 |
Genre | : Computers |
ISBN | : 1108569323 |
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
Author | : Ted Dunning |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 104 |
Release | : 2015-03-24 |
Genre | : Computers |
ISBN | : 1491928921 |
If you’re a business team leader, CIO, business analyst, or developer interested in how Apache Hadoop and Apache HBase-related technologies can address problems involving large-scale data in cost-effective ways, this book is for you. Using real-world stories and situations, authors Ted Dunning and Ellen Friedman show Hadoop newcomers and seasoned users alike how NoSQL databases and Hadoop can solve a variety of business and research issues. You’ll learn about early decisions and pre-planning that can make the process easier and more productive. If you’re already using these technologies, you’ll discover ways to gain the full range of benefits possible with Hadoop. While you don’t need a deep technical background to get started, this book does provide expert guidance to help managers, architects, and practitioners succeed with their Hadoop projects. Examine a day in the life of big data: India’s ambitious Aadhaar project Review tools in the Hadoop ecosystem such as Apache’s Spark, Storm, and Drill to learn how they can help you Pick up a collection of technical and strategic tips that have helped others succeed with Hadoop Learn from several prototypical Hadoop use cases, based on how organizations have actually applied the technology Explore real-world stories that reveal how MapR customers combine use cases when putting Hadoop and NoSQL to work, including in production
Author | : Dipanjan Sarkar |
Publisher | : Apress |
Total Pages | : 545 |
Release | : 2017-12-20 |
Genre | : Computers |
ISBN | : 1484232070 |
Master the essential skills needed to recognize and solve complex problems with machine learning and deep learning. Using real-world examples that leverage the popular Python machine learning ecosystem, this book is your perfect companion for learning the art and science of machine learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute machine learning systems and projects successfully. Practical Machine Learning with Python follows a structured and comprehensive three-tiered approach packed with hands-on examples and code. Part 1 focuses on understanding machine learning concepts and tools. This includes machine learning basics with a broad overview of algorithms, techniques, concepts and applications, followed by a tour of the entire Python machine learning ecosystem. Brief guides for useful machine learning tools, libraries and frameworks are also covered. Part 2 details standard machine learning pipelines, with an emphasis on data processing analysis, feature engineering, and modeling. You will learn how to process, wrangle, summarize and visualize data in its various forms. Feature engineering and selection methodologies will be covered in detail with real-world datasets followed by model building, tuning, interpretation and deployment. Part 3 explores multiple real-world case studies spanning diverse domains and industries like retail, transportation, movies, music, marketing, computer vision and finance. For each case study, you will learn the application of various machine learning techniques and methods. The hands-on examples will help you become familiar with state-of-the-art machine learning tools and techniques and understand what algorithms are best suited for any problem. Practical Machine Learning with Python will empower you to start solving your own problems with machine learning today! What You'll Learn Execute end-to-end machine learning projects and systems Implement hands-on examples with industry standard, open source, robust machine learning tools and frameworks Review case studies depicting applications of machine learning and deep learning on diverse domains and industries Apply a wide range of machine learning models including regression, classification, and clustering. Understand and apply the latest models and methodologies from deep learning including CNNs, RNNs, LSTMs and transfer learning. Who This Book Is For IT professionals, analysts, developers, data scientists, engineers, graduate students
Author | : Mirjana Ivanović |
Publisher | : Springer |
Total Pages | : 319 |
Release | : 2017-10-03 |
Genre | : Technology & Engineering |
ISBN | : 3319663798 |
This book presents a collection of contributions addressing recent advances and research in synergistic combinations of topics in the joint fields of intelligent computing and distributed computing. It focuses on the following specific topics: distributed data mining and machine learning, reasoning and decision-making in distributed environments, distributed evolutionary algorithms, trust and reputation models for distributed systems, scheduling and resource allocation in distributed systems, intelligent multi-agent systems, advanced agent-based and service-based architectures, and Smart Cloud and Internet of Things (IoT) environments. The book represents the combined peer-reviewed proceedings of the 11th International Symposium on Intelligent Distributed Computing (IDC 2017) and the 7th International Workshop on Applications of Software Agents (WASA 2017), both of which were held in Belgrade, Serbia from October 11 to 13, 2017.
Author | : Sean Owen |
Publisher | : Simon and Schuster |
Total Pages | : 616 |
Release | : 2011-10-04 |
Genre | : Computers |
ISBN | : 1638355371 |
Summary Mahout in Action is a hands-on introduction to machine learning with Apache Mahout. Following real-world examples, the book presents practical use cases and then illustrates how Mahout can be applied to solve them. Includes a free audio- and video-enhanced ebook. About the Technology A computer system that learns and adapts as it collects data can be really powerful. Mahout, Apache's open source machine learning project, captures the core algorithms of recommendation systems, classification, and clustering in ready-to-use, scalable libraries. With Mahout, you can immediately apply to your own projects the machine learning techniques that drive Amazon, Netflix, and others. About this Book This book covers machine learning using Apache Mahout. Based on experience with real-world applications, it introduces practical use cases and illustrates how Mahout can be applied to solve them. It places particular focus on issues of scalability and how to apply these techniques against large data sets using the Apache Hadoop framework. This book is written for developers familiar with Java -- no prior experience with Mahout is assumed. Owners of a Manning pBook purchased anywhere in the world can download a free eBook from manning.com at any time. They can do so multiple times and in any or all formats available (PDF, ePub or Kindle). To do so, customers must register their printed copy on Manning's site by creating a user account and then following instructions printed on the pBook registration insert at the front of the book. What's Inside Use group data to make individual recommendations Find logical clusters within your data Filter and refine with on-the-fly classification Free audio and video extras Table of Contents Meet Apache Mahout PART 1 RECOMMENDATIONS Introducing recommenders Representing recommender data Making recommendations Taking recommenders to production Distributing recommendation computations PART 2 CLUSTERING Introduction to clustering Representing data Clustering algorithms in Mahout Evaluating and improving clustering quality Taking clustering to production Real-world applications of clustering PART 3 CLASSIFICATION Introduction to classification Training a classifier Evaluating and tuning a classifier Deploying a classifier Case study: Shop It To Me