Shock Wave-Boundary-Layer Interactions

Shock Wave-Boundary-Layer Interactions
Author: Holger Babinsky
Publisher: Cambridge University Press
Total Pages: 481
Release: 2011-09-12
Genre: Technology & Engineering
ISBN: 1139498649

Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.

NASA Technical Paper

NASA Technical Paper
Author: United States. National Aeronautics and Space Administration
Publisher:
Total Pages: 160
Release: 1977
Genre: Astronautics
ISBN:

Prediction of the Pressure Fluctuations Associated with Maneuvering Reentry Weapons

Prediction of the Pressure Fluctuations Associated with Maneuvering Reentry Weapons
Author: Anthony L. Laganelli
Publisher:
Total Pages: 184
Release: 1984
Genre: Ballistic missiles
ISBN:

An experimental program was conducted at the AEDC von Karman facility, Tunnels A and B, in which acoustic pressure fluctuation data were acquired on a 7 degree half-cone-angle model featuring a control surface. The objective was to define the aeroacoustic environment applicable to re-entry vibration response analysis for both ballistic and maneuvering vehicles. Wind tunnel measurements were obtained at Mach 4 and 8 for several values of freestream Reynolds number and model angle of attack. Stationary zones of laminar, transitional, and turbulent flow over the model were achieved. Acoustic data were reduced to rms fluctuating pressure, and power and cross-power spectral densities. Results were normalized using local boundary layer parameters for comparison with previous high speed measurements. The present study re-examined the aeroacoustic environment prediction capability relative to compressible flow conditions. Moreover, boundary layer characteristic lengths and velocities were reviewed in order to develop normalization procedures required for development of appropriate aeroacoustic scaling laws. It was determined that fluctuating pressure characteristics described by incompressible theory as well as empirical correlations could be modified to a compressible state through a transformation function. In this manner, compressible data were transformed to the incompressible plane where direct use of more tractable prediction techniques are available for engineering design analyses.

Design Methodologies for Space Transportation Systems

Design Methodologies for Space Transportation Systems
Author: Walter Edward Hammond
Publisher: AIAA
Total Pages: 906
Release: 2001
Genre: Astronautics
ISBN: 9781600860454

Annotation "Design Methodologies for Space Transportation Systems is a sequel to the author's earlier text, "Space Transportation: A Systems Approach to Analysis and Design. Both texts represent the most comprehensive exposition of the existing knowledge and practice in the design and project management of space transportation systems, and they reflect a wealth of experience by the author with the design and management of space systems. The text discusses new conceptual changes in the design philosophy away from multistage expendable vehicles to winged, reusable launch vehicles and presents an overview of the systems engineering and vehicle design process as well as systems trades and analysis. Individual chapters are devoted to specific disciplines such as aerodynamics, aerothermal analysis, structures, materials, propulsion, flight mechanics and trajectories, avionics and computers, and control systems. The final chapters deal with human factors, payload, launch and mission operations, safety, and mission assurance. The two texts by the author provide a valuable source of information for the space transportation community of designers, operators, and managers. A companion CD-ROM succinctly packages some oversized figures and tables, resources for systems engineering and launch ranges, and a compendium of software programs. The computer programs include the USAF AIRPLANE AND MISSILE DATCOM CODES (with extensive documentation); COSTMODL for software costing; OPGUID launch vehicle trajectory generator; SUPERFLO-a series of 11 programs intended for solving compressible flow problems in ducts and pipes found in industrial facilities; and a wealth of Microsoft Excel spreadsheet programs covering thedisciplines of statistics, vehicle trajectories, propulsion performance, math utilities,