Power-efficient System Design

Power-efficient System Design
Author: Preeti Ranjan Panda
Publisher: Springer Science & Business Media
Total Pages: 260
Release: 2010-07-23
Genre: Technology & Engineering
ISBN: 144196388X

The Information and communication technology (ICT) industry is said to account for 2% of the worldwide carbon emissions – a fraction that continues to grow with the relentless push for more and more sophisticated computing equipment, c- munications infrastructure, and mobile devices. While computers evolved in the directionofhigherandhigherperformanceformostofthelatterhalfofthe20thc- tury, the late 1990’s and early 2000’ssaw a new emergingfundamentalconcern that has begun to shape our day-to-day thinking in system design – power dissipation. As we elaborate in Chapter 1, a variety of factors colluded to raise power-ef?ciency as a ?rst class design concern in the designer’s mind, with profound consequences all over the ?eld: semiconductor process design, circuit design, design automation tools, system and application software, all the way to large data centers. Power-ef?cient System Design originated from a desire to capture and highlight the exciting developments in the rapidly evolving ?eld of power and energy op- mization in electronic and computer based systems. Tremendous progress has been made in the last two decades, and the topic continues to be a fascinating research area. To develop a clearer focus, we have concentrated on the relatively higher level of design abstraction that is loosely called the system level. In addition to the ext- sive coverage of traditional power reduction targets such as CPU and memory, the book is distinguished by detailed coverage of relatively modern power optimization ideas focussing on components such as compilers, operating systems, servers, data centers, and graphics processors.

Design and Development of Efficient Energy Systems

Design and Development of Efficient Energy Systems
Author: Suman Lata Tripathi
Publisher: John Wiley & Sons
Total Pages: 386
Release: 2021-04-13
Genre: Computers
ISBN: 1119761638

There is not a single industry which will not be transformed by machine learning and Internet of Things (IoT). IoT and machine learning have altogether changed the technological scenario by letting the user monitor and control things based on the prediction made by machine learning algorithms. There has been substantial progress in the usage of platforms, technologies and applications that are based on these technologies. These breakthrough technologies affect not just the software perspective of the industry, but they cut across areas like smart cities, smart healthcare, smart retail, smart monitoring, control, and others. Because of these “game changers,” governments, along with top companies around the world, are investing heavily in its research and development. Keeping pace with the latest trends, endless research, and new developments is paramount to innovate systems that are not only user-friendly but also speak to the growing needs and demands of society. This volume is focused on saving energy at different levels of design and automation including the concept of machine learning automation and prediction modeling. It also deals with the design and analysis for IoT-enabled systems including energy saving aspects at different level of operation. The editors and contributors also cover the fundamental concepts of IoT and machine learning, including the latest research, technological developments, and practical applications. Valuable as a learning tool for beginners in this area as well as a daily reference for engineers and scientists working in the area of IoT and machine technology, this is a must-have for any library.

System-Level Design Techniques for Energy-Efficient Embedded Systems

System-Level Design Techniques for Energy-Efficient Embedded Systems
Author: Marcus T. Schmitz
Publisher: Springer
Total Pages: 205
Release: 2006-01-16
Genre: Computers
ISBN: 0306487365

System-Level Design Techniques for Energy-Efficient Embedded Systems addresses the development and validation of co-synthesis techniques that allow an effective design of embedded systems with low energy dissipation. The book provides an overview of a system-level co-design flow, illustrating through examples how system performance is influenced at various steps of the flow including allocation, mapping, and scheduling. The book places special emphasis upon system-level co-synthesis techniques for architectures that contain voltage scalable processors, which can dynamically trade off between computational performance and power consumption. Throughout the book, the introduced co-synthesis techniques, which target both single-mode systems and emerging multi-mode applications, are applied to numerous benchmarks and real-life examples including a realistic smart phone.

Energy Efficient Microprocessor Design

Energy Efficient Microprocessor Design
Author: Thomas D. Burd
Publisher: Springer Science & Business Media
Total Pages: 384
Release: 2002
Genre: Computers
ISBN: 9780792375869

This volume starts with a description of the metrics and benchmarks used to design energy-efficient microprocessor systems, followed by energy-efficient methodologies for the architecture and circuit design, DC-DC conversion, energy-efficient software and system integration.

Efficient Electrical Systems Design Handbook

Efficient Electrical Systems Design Handbook
Author: Albert Thumann
Publisher: CRC Press
Total Pages: 407
Release: 2020-12-17
Genre: Technology & Engineering
ISBN: 8770222789

Now you can achieve optimum performance and efficiency in the design of electric systems for virtually any size or type of building or industrial facility utilizing the state-of-the-art methodologies detailed in this comprehensive handbook. Step-by-step guidelines take you through each phase of design, covering equipment selection, power distribution system analysis, conduit and conductor sizing, lighting system design, control systems, electronic instrumentation, protective relaying, energy management systems, power quality, variable speed drives, motor selection, and more. The latest codes (NEC 2008) as well as currently available equipment are referenced. Numerous examples and simulation exercises are included, along with detailed design examples. Fully illustrated with many useful diagrams and tables, this book is a practical guide for electrical engineers, plant and facility engineers, and other professionals responsible for implementing or overseeing the design of facility electrical systems.

Renewable Energy System Design

Renewable Energy System Design
Author: Ziyad Salameh
Publisher: Academic Press
Total Pages: 401
Release: 2014-05-12
Genre: Technology & Engineering
ISBN: 0080961673

The limitation of fossil fuels has challenged scientists and engineers to search for alternative energy resources that can meet future energy demand. Renewable Energy System Design is a valuable reference focusing on engineering, design, and operating principles that engineers can follow in order to successfully design more robust and efficient renewable energy systems. Written by Dr. Ziyad Salameh, an expert with over thirty years of teaching, research, and design experience, Renewable Energy System Design provides readers with the "nuts and bolts" of photovoltaic, wind energy, and hybrid wind/PV systems. It explores renewable energy storage devices with an emphasis on batteries and fuel cells and emerging sustainable technologies like biomass, geothermal power, ocean thermal energy conversion, solar thermal, and satellite power. Renewable Energy System Design is a must-have resource that provides engineers and students with a comprehensive yet practical guide to the characteristics, principles of operation, and power potential of the most prevalent renewable energy systems. Explains and demonstrates design and operating principles for solar, wind, hybrid and emerging systems with diagrams and examples Utilizes case studies to help engineers anticipate and overcome common design challenges Explores renewable energy storage methods particularly batteries and fuel cells and emerging renewable technologies

Optimal Design and Retrofit of Energy Efficient Buildings, Communities, and Urban Centers

Optimal Design and Retrofit of Energy Efficient Buildings, Communities, and Urban Centers
Author: Moncef Krarti
Publisher: Butterworth-Heinemann
Total Pages: 648
Release: 2018-03-27
Genre: Technology & Engineering
ISBN: 0128118946

Optimal Design and Retrofit of Energy Efficient Buildings, Communities, and Urban Centers presents current techniques and technologies for energy efficiency in buildings. Cases introduce and demonstrate applications in both the design of new buildings and retrofit of existing structures. The book begins with an introduction that includes energy consumption statistics, building energy efficiency codes, and standards and labels from around the world. It then highlights the need for integrated and comprehensive energy analysis approaches. Subsequent sections present an overview of advanced energy efficiency technologies for buildings, including dynamic insulation materials, phase change materials, LED lighting and daylight controls, Life Cycle Analysis, and more. This book provides researchers and professionals with a coherent set of tools and techniques for enhancing energy efficiency in new and existing buildings. The case studies presented help practitioners implement the techniques and technologies in their own projects. Introduces a holistic analysis approach to energy efficiency for buildings using the concept of energy productivity Provides coverage of individual buildings, communities and urban centers Includes both the design of new buildings and retrofitting of existing structures to improve energy efficiency Describes state-of-the-art energy efficiency technologies Presents several cases studies and examples that illustrate the analysis techniques and impact of energy efficiency technologies and controls

Energy Efficient Computing & Electronics

Energy Efficient Computing & Electronics
Author: Santosh K. Kurinec
Publisher: CRC Press
Total Pages: 452
Release: 2019-01-31
Genre: Computers
ISBN: 1351779869

In our abundant computing infrastructure, performance improvements across most all application spaces are now severely limited by the energy dissipation involved in processing, storing, and moving data. The exponential increase in the volume of data to be handled by our computational infrastructure is driven in large part by unstructured data from countless sources. This book explores revolutionary device concepts, associated circuits, and architectures that will greatly extend the practical engineering limits of energy-efficient computation from device to circuit to system level. With chapters written by international experts in their corresponding field, the text investigates new approaches to lower energy requirements in computing. Features • Has a comprehensive coverage of various technologies • Written by international experts in their corresponding field • Covers revolutionary concepts at the device, circuit, and system levels

Energy Efficient High Performance Processors

Energy Efficient High Performance Processors
Author: Jawad Haj-Yahya
Publisher: Springer
Total Pages: 176
Release: 2018-03-22
Genre: Technology & Engineering
ISBN: 9811085544

This book explores energy efficiency techniques for high-performance computing (HPC) systems using power-management methods. Adopting a step-by-step approach, it describes power-management flows, algorithms and mechanism that are employed in modern processors such as Intel Sandy Bridge, Haswell, Skylake and other architectures (e.g. ARM). Further, it includes practical examples and recent studies demonstrating how modem processors dynamically manage wide power ranges, from a few milliwatts in the lowest idle power state, to tens of watts in turbo state. Moreover, the book explains how thermal and power deliveries are managed in the context this huge power range. The book also discusses the different metrics for energy efficiency, presents several methods and applications of the power and energy estimation, and shows how by using innovative power estimation methods and new algorithms modern processors are able to optimize metrics such as power, energy, and performance. Different power estimation tools are presented, including tools that break down the power consumption of modern processors at sub-processor core/thread granularity. The book also investigates software, firmware and hardware coordination methods of reducing power consumption, for example a compiler-assisted power management method to overcome power excursions. Lastly, it examines firmware algorithms for dynamic cache resizing and dynamic voltage and frequency scaling (DVFS) for memory sub-systems.