Power and Thermal-Aware Scheduling for Real-time Computing Systems

Power and Thermal-Aware Scheduling for Real-time Computing Systems
Author: Huang Huang
Publisher: LAP Lambert Academic Publishing
Total Pages: 108
Release: 2013
Genre:
ISBN: 9783659371851

We have been enjoying tremendous benefits thanks to the revolutionary advancement of computing systems, driven by the remarkable semiconductor technology scaling and the advanced processor architecture. However, the exponentially increased transistor density has directly led to increased power consumption and elevated system temperature. The power and thermal issues have posed enormous challenges and threaten to slow down the continuous evolvement of computer technology. Effective power/thermal-aware design techniques are urgently demanded at all design abstraction levels. In this book, we present our research efforts to employ real-time scheduling techniques to solve the resource-constrained power/thermal-aware, design-optimization problems. The novelty of this work is that we integrate the cutting-edge research on power and thermal at the circuit and architectural-level into a set of accurate yet simplified system-level models, and are able to conduct system-level analysis and design based on these models. The theoretical study in this work serves as a solid foundation for the guidance of the power/thermal-aware scheduling algorithms development in practical computing systems.

Energy-aware Scheduling on Multiprocessor Platforms

Energy-aware Scheduling on Multiprocessor Platforms
Author: Dawei Li
Publisher: Springer Science & Business Media
Total Pages: 67
Release: 2012-10-19
Genre: Technology & Engineering
ISBN: 1461452244

Multiprocessor platforms play important roles in modern computing systems, and appear in various applications, ranging from energy-limited hand-held devices to large data centers. As the performance requirements increase, energy-consumption in these systems also increases significantly. Dynamic Voltage and Frequency Scaling (DVFS), which allows processors to dynamically adjust the supply voltage and the clock frequency to operate on different power/energy levels, is considered an effective way to achieve the goal of energy-saving. This book surveys existing works that have been on energy-aware task scheduling on DVFS multiprocessor platforms. Energy-aware scheduling problems are intrinsically optimization problems, the formulations of which greatly depend on the platform and task models under consideration. Thus, Energy-aware Scheduling on Multiprocessor Platforms covers current research on this topic and classifies existing works according to two key standards, namely, homogeneity/heterogeneity of multiprocessor platforms and the task types considered. Under this classification, other sub-issues are also included, such as, slack reclamation, fixed/dynamic priority scheduling, partition-based/global scheduling, and application-specific power consumption, etc.

Energy-Aware Scheduling for Real-Time Embedded Systems

Energy-Aware Scheduling for Real-Time Embedded Systems
Author: Muhammad Khurram Bhatti
Publisher: LAP Lambert Academic Publishing
Total Pages: 208
Release: 2012-04
Genre:
ISBN: 9783846552056

Real-time embedded systems have become ubiquitous in our daily life. Due to their diversified usage, the research on these systems has confronted with many emerging challenges. One such challenge is to reduce power and energy consumption while maintaining assurance that timing constraints will be met. Power densities in microprocessors are almost doubled every three years. As energy is power integrated over time, supplying the required energy may become prohibitively expensive, or even technologically infeasible. This is particularly difficult in portable systems that heavily rely on batteries for energy, and will become even more critical as battery capacities are increasing at a much slower rate than power consumption. This book presents four contributions that are based on the thesis that energy-efficiency of Real-time Embedded Systems and scheduling are closely related problems and therefore, should be tackled together for optimal results. Contributions of this book are: 1) Two-level Hierarchical Scheduling Algorithm for Multiprocessor Systems, 2) Assertive Dynamic Power Management Scheme, 3) Deterministic Stretch-to-Fit DVFS Technique, and 4) Hybrid Power Management Scheme.

Power-aware Scheduling for Real-time Embedded Systems

Power-aware Scheduling for Real-time Embedded Systems
Author: Linwei Niu
Publisher:
Total Pages: 181
Release: 2006
Genre: Embedded computer systems
ISBN: 9781109840513

Driven by the remarkable evolution of IC technology and the ever-increasing human appetite for higher computing power, the dramatically increased power/energy consumption for real-time embedded systems has presented a profound challenge to researchers and developers. Battery-operated embedded devices, which have already been ubiquitous, demand low power consumption to extend the battery life and thus the mission cycles. Even for power-rich platforms, rapidly elevated power consumption raised serious concerns regarding the reliability and packaging/cooling cost as a result of the heat dissipation. It is fair to say that energy reduction has become one of the most critical design issues in the design of next generation real-time embedded systems. In our research, we seek to address this problem at the operating system level. Specifically, we believe that real-time scheduling plays a critical role in power/energy reduction not only because most embedded systems have real-time requirements, but also because significant energy savings can be achieved by taking advantage of the knowledge in application characteristics and underlying architectures known at this level. The goal of our research is to study and develop appropriate real-time scheduling techniques that can exploit the advanced power manageable features in state-of-the-art architecture to minimize the power/energy consumption while satisfying other design requirements at the same time. The contributions of the dissertation include: (i) We developed several advanced power-aware scheduling algorithms for hard real-time systems with emphasis on reducing both dynamic and leakage power consumption; (ii) We extended the system model from simple hard real-time systems to soft real-time systems with more complicated Quality of Service constraints; (iii) We also developed efficient scheduling algorithms to minimize the system-wide energy consumption with peripheral devices taken into consideration. Experimental results have demonstrated that our techniques greatly outperform existing ones. The problems discussed in this dissertation are rather general in real-time embedded system designs, and these methodologies and techniques are important both in the theoretical and practical sense.

Hard Real-time Computing Systems

Hard Real-time Computing Systems
Author: Giorgio C. Buttazzo
Publisher: Springer
Total Pages: 379
Release: 1997-01-01
Genre: Computer science
ISBN: 0792399943

Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications is a basic treatise on real-time computing, with particular emphasis on predictable scheduling algorithms. It introduces the fundamental concepts of real-time computing, illustrates the most significant results in the field, and provides the essential methodologies for designing predictable computing systems which can be used to support critical control applications. This volume serves as a textbook for advanced level courses on the topic. Each chapter provides basic concepts, which are followed by algorithms that are illustrated with concrete examples, figures and tables. Exercises are included with each chapter and solutions are given at the end of the book. The book also provides an excellent reference for those interested in real-time computing for designing and/or developing predictable control applications.

Scheduling in Real-Time Systems

Scheduling in Real-Time Systems
Author: Francis Cottet
Publisher: Wiley
Total Pages: 282
Release: 2002-11-22
Genre: Computers
ISBN: 9780470847664

* Real-time systems are used in a wide range of applications, including command and control systems, flight control, telecommunication systems, and online purchase payment * Provides an accessible yet comprehensive treatment * of real-time computing and communications systems * Outlines the basics of real-time scheduling and scheduling policies designed for real-time applications * Each chapter contains examples and case studies along with test exercises and solutions

Handbook of Energy-Aware and Green Computing - Two Volume Set

Handbook of Energy-Aware and Green Computing - Two Volume Set
Author: Ishfaq Ahmad
Publisher: CRC Press
Total Pages: 1284
Release: 2016-02-03
Genre: Computers
ISBN: 1482254441

Implementing energy-efficient CPUs and peripherals as well as reducing resource consumption have become emerging trends in computing. As computers increase in speed and power, their energy issues become more and more prevalent. The need to develop and promote environmentally friendly computer technologies and systems has also come to the forefront

Dynamic Reconfiguration in Real-Time Systems

Dynamic Reconfiguration in Real-Time Systems
Author: Weixun Wang
Publisher: Springer Science & Business Media
Total Pages: 232
Release: 2012-07-20
Genre: Technology & Engineering
ISBN: 1461402786

Given the widespread use of real-time multitasking systems, there are tremendous optimization opportunities if reconfigurable computing can be effectively incorporated while maintaining performance and other design constraints of typical applications. The focus of this book is to describe the dynamic reconfiguration techniques that can be safely used in real-time systems. This book provides comprehensive approaches by considering synergistic effects of computation, communication as well as storage together to significantly improve overall performance, power, energy and temperature.

Real-time Scheduling for Energy Haversting Embedded Systems

Real-time Scheduling for Energy Haversting Embedded Systems
Author: Younès Chandarli
Publisher:
Total Pages: 0
Release: 2014
Genre:
ISBN:

In this thesis, we are interested in the real-time fixed-priority scheduling problem of energy-harvesting systems. An energy-harvesting system is a system that can collect the energy from the environment in order to store it in a storage device and then to use it to supply an electronic device. This technology is used in small embedded systems that are required to run autonomously for a very long lifespan. Wireless sensor networks and medical implants are typical applications of this technology. Moreover, most of these devices have to execute many recurrent tasks within a limited time. Thus, these devices are subject to real-time constraints where the correctness of the system depends not only on the correctness of the results but also on the time in which they are delivered. This thesis focuses on the preemptive fixed-task-priority real-time scheduling for such systems in monoprocessor platforms. The problematic here is to find efficient scheduling algorithms and schedulability conditions that check the schedulability of a given task set in a given energy configuration. The first result of this thesis is the proposition of the PFPasap scheduling algorithm. It is an adaptation of the classical fixed-task-priority scheduling to the energy-harvesting context. It consists of executing tasks as soon as possible whenever the energy is sufficient to execute at least one time unit and replenishes otherwise. The replenishment periods are as long as needed to execute one time unit. We prove that PFPasap is optimal but only in the case of non-concrete systems where the first release time of tasks and the initial energy storage unit level are known only at run-time and where all the tasks consume more energy than the replenishment during execution times. A sufficient and necessary schedulability condition for such systems is also proposed. Unfortunately, when we relax the assumption of tasks energy consumption profile, by considering both tasks that consume more energy than the replenishment and the ones that consume less than the replenishment, PFPasap is no longer optimal and the worst-case scenario is no longer the synchronous release of all the tasks, which makes the precedent schedulability test only necessary. To cope with this limitation, we propose to upper bound tasks worst-case response time in order to build sufficient schedulability conditions instead of exact ones. Regarding algorithms optimality, we explore different ideas in order to build an optimal algorithm for the general model of fixed-task-priority tasks by considering all types of task sets and energy consumption profiles. We show through some counter examples the difficulty of finding such an algorithm and we show that most of intuitive scheduling algorithms are not optimal. After that, we discuss the possibility of finding such an algorithm. In order to better understand the scheduling problematic of fixed-priority scheduling for energy-harvesting systems, we also try to explore the solutions of similar scheduling problematics, especially the ones that delay executions in order to guarantee some requirements. The thermal-aware scheduling is one of these problematics. It consists of executing tasks such that a maximum temperature is never exceeded. This may lead to introduce additional idle times to cool down the system in order to prevent reaching the maximum temperature. As a first step, we propose in this thesis to adapt the solutions proposed for energy-harvesting systems to the thermal-aware model. Thus, we adapt the PFPasap algorithm to respect the thermal constraints and we propose a sufficient schedulability analysis based on worst-case response time upper bounds. Finally, we present YARTISS: the simulation tool used to evaluate the theoretical results presented in this dissertation.