Population Dynamics and the Tribolium Model: Genetics and Demography

Population Dynamics and the Tribolium Model: Genetics and Demography
Author: Robert F. Costantino
Publisher: Springer Science & Business Media
Total Pages: 272
Release: 2012-12-06
Genre: Science
ISBN: 1461231701

The study of populations is becoming increasingly focused on dynamics. We believe there are two reasons for this trend. The ftrst is the impactof nonlinear dynamics with its exciting ideas and colorful language: bifurcations, domains of attraction, chaos, fractals, strange attractors. Complexity, which is so very much a part of biology, now seems to be also a part of mathematics. A second trend is the accessibility of the new concepts. Thebarriers tocommunicationbetween theoristandexperimentalistseemless impenetrable. The active participationofthe experimentalist means that the theory will obtain substance. Our role is the application of the theory of dynamics to the analysis ofbiological populations. We began our work early in 1979 by writing an ordinary differential equation for the rateofchange in adult numbers which was based on an equilibrium model proposed adecadeearlier. Duringthenextfewmonths weftlledournotebookswithstraightforward deductions from the model and its associated biological implications. Slowly, some of the biological observations were explained and papers followed on a variety of topics: genetic and demographic stability, stationary probability distributions for population size,population growth asabirth-deathprocess, natural selectionanddensity-dependent population growth, genetic disequilibrium, and the stationary stochastic dynamics of adult numbers.

Stability in Model Populations (MPB-31)

Stability in Model Populations (MPB-31)
Author: Laurence D. Mueller
Publisher: Princeton University Press
Total Pages: 334
Release: 2020-03-31
Genre: Science
ISBN: 0691209944

Throughout the twentieth century, biologists investigated the mechanisms that stabilize biological populations, populations which--if unchecked by such agencies as competition and predation--should grow geometrically. How is order in nature maintained in the face of the seemingly disorderly struggle for existence? In this book, Laurence Mueller and Amitabh Joshi examine current theories of population stability and show how recent laboratory research on model populations--particularly blowflies, Tribolium, and Drosophila--contributes to our understanding of population dynamics and the evolution of stability. The authors review the general theory of population stability and critically analyze techniques for inferring whether a given population is in balance or not. They then show how rigorous empirical research can reveal both the proximal causes of stability (how populations are regulated and maintained at an equilibrium, including the relative roles of biotic and abiotic factors) and its ultimate, mostly evolutionary causes. In the process, they describe experimental studies on model systems that address the effects of age-structure, inbreeding, resource levels, and population structure on the stability and persistence of populations. The discussion incorporates the authors' own findings on the evolution of population stability in Drosophila. They go on to relate laboratory work to studies of animals in the wild and to develop a general framework for relating the life history and ecology of a species to its population dynamics. This accessible, finely written illustration of how carefully designed experiments can improve theory will have tremendous value for all ecologists and evolutionary biologists.

Structured-Population Models in Marine, Terrestrial, and Freshwater Systems

Structured-Population Models in Marine, Terrestrial, and Freshwater Systems
Author: Shripad Tuljapurkar
Publisher: Springer Science & Business Media
Total Pages: 644
Release: 2012-12-06
Genre: Science
ISBN: 1461559731

In the summer of 1993, twenty-six graduate and postdoctoral stu dents and fourteen lecturers converged on Cornell University for a summer school devoted to structured-population models. This school was one of a series to address concepts cutting across the traditional boundaries separating terrestrial, marine, and freshwa ter ecology. Earlier schools resulted in the books Patch Dynamics (S. A. Levin, T. M. Powell & J. H. Steele, eds., Springer-Verlag, Berlin, 1993) and Ecological Time Series (T. M. Powell & J. H. Steele, eds., Chapman and Hall, New York, 1995); a book on food webs is in preparation. Models of population structure (differences among individuals due to age, size, developmental stage, spatial location, or genotype) have an important place in studies of all three kinds of ecosystem. In choosing the participants and lecturers for the school, we se lected for diversity-biologists who knew some mathematics and mathematicians who knew some biology, field biologists sobered by encounters with messy data and theoreticians intoxicated by the elegance of the underlying mathematics, people concerned with long-term evolutionary problems and people concerned with the acute crises of conservation biology. For four weeks, these perspec tives swirled in discussions that started in the lecture hall and carried on into the sweltering Ithaca night. Diversity mayor may not increase stability, but it surely makes things interesting.

Sensitivity Analysis: Matrix Methods in Demography and Ecology

Sensitivity Analysis: Matrix Methods in Demography and Ecology
Author: Hal Caswell
Publisher: Springer
Total Pages: 308
Release: 2019-04-02
Genre: Social Science
ISBN: 3030105342

This open access book shows how to use sensitivity analysis in demography. It presents new methods for individuals, cohorts, and populations, with applications to humans, other animals, and plants. The analyses are based on matrix formulations of age-classified, stage-classified, and multistate population models. Methods are presented for linear and nonlinear, deterministic and stochastic, and time-invariant and time-varying cases. Readers will discover results on the sensitivity of statistics of longevity, life disparity, occupancy times, the net reproductive rate, and statistics of Markov chain models in demography. They will also see applications of sensitivity analysis to population growth rates, stable population structures, reproductive value, equilibria under immigration and nonlinearity, and population cycles. Individual stochasticity is a theme throughout, with a focus that goes beyond expected values to include variances in demographic outcomes. The calculations are easily and accurately implemented in matrix-oriented programming languages such as Matlab or R. Sensitivity analysis will help readers create models to predict the effect of future changes, to evaluate policy effects, and to identify possible evolutionary responses to the environment. Complete with many examples of the application, the book will be of interest to researchers and graduate students in human demography and population biology. The material will also appeal to those in mathematical biology and applied mathematics.

An Introduction to Structured Population Dynamics

An Introduction to Structured Population Dynamics
Author: J. M. Cushing
Publisher: SIAM
Total Pages: 106
Release: 1998-01-01
Genre: Science
ISBN: 9781611970005

Interest in the temporal fluctuations of biological populations can be traced to the dawn of civilization. How can mathematics be used to gain an understanding of population dynamics? This monograph introduces the theory of structured population dynamics and its applications, focusing on the asymptotic dynamics of deterministic models. This theory bridges the gap between the characteristics of individual organisms in a population and the dynamics of the total population as a whole. In this monograph, many applications that illustrate both the theory and a wide variety of biological issues are given, along with an interdisciplinary case study that illustrates the connection of models with the data and the experimental documentation of model predictions. The author also discusses the use of discrete and continuous models and presents a general modeling theory for structured population dynamics. Cushing begins with an obvious point: individuals in biological populations differ with regard to their physical and behavioral characteristics and therefore in the way they interact with their environment. Studying this point effectively requires the use of structured models. Specific examples cited throughout support the valuable use of structured models. Included among these are important applications chosen to illustrate both the mathematical theories and biological problems that have received attention in recent literature.

Population Dynamics and Laboratory Ecology

Population Dynamics and Laboratory Ecology
Author: Robert Desharnais
Publisher: Elsevier
Total Pages: 400
Release: 2005-08-04
Genre: Science
ISBN: 9780120139378

Population Dynamics and Laboratory Ecology highlights the contributions laboratory studies are making to our understanding of the dynamics of ecological and evolutionary systems. Chapters address the scientific rationale for laboratory ecology, its historical role within the broader discipline, and recent advances in research. The book presents results from a wide range of laboratory systems including insects, mites, plankton, protists, and microbes. A common theme throughout the book is the value of microcosm studies in advancing our knowledge of ecological and evolutionary principles. Each chapter is authored by scientists who are leading experts in their fields. The book addresses fundamental questions that are of interest to biologists whether they work in the laboratory or field or whether they are primarily empiricists or theorists. Details a scientific rationale for laboratory systems in ecological and evolutionary studies Offers a view on historical role of laboratory studies Includes examples of recent research advances in ecology and evolution using laboratory systems, ranging from insects to microbes Integrates mathematics, statistics and experimental studies

Dynamic Food Webs

Dynamic Food Webs
Author: Peter C de Ruiter
Publisher: Elsevier
Total Pages: 616
Release: 2005-12-20
Genre: Science
ISBN: 0080460941

Dynamic Food Webs challenges us to rethink what factors may determine ecological and evolutionary pathways of food web development. It touches upon the intriguing idea that trophic interactions drive patterns and dynamics at different levels of biological organization: dynamics in species composition, dynamics in population life-history parameters and abundances, and dynamics in individual growth, size and behavior. These dynamics are shown to be strongly interrelated governing food web structure and stability and the role of populations and communities play in ecosystem functioning. Dynamic Food Webs not only offers over 100 illustrations, but also contains 8 riveting sections devoted to an understanding of how to manage the effects of environmental change, the protection of biological diversity and the sustainable use of natural resources. Dynamic Food Webs is a volume in the Theoretical Ecology series. - Relates dynamics on different levels of biological organization: individuals, populations, and communities - Deals with empirical and theoretical approaches - Discusses the role of community food webs in ecosystem functioning - Proposes methods to assess the effects of environmental change on the structure of biological communities and ecosystem functioning - Offers an analyses of the relationship between complexity and stability in food webs

Experimental Evolution

Experimental Evolution
Author: Theodore Garland
Publisher: Univ of California Press
Total Pages: 752
Release: 2009-12-03
Genre: Nature
ISBN: 0520261801

This volume summarizes studies in experimental evolution, outlining current techniques and applications, and presenting the field's range of research.

Chaos in Ecology

Chaos in Ecology
Author: J. M. Cushing
Publisher: Elsevier
Total Pages: 248
Release: 2003
Genre: Mathematics
ISBN: 9780121988760

Chaos in Ecology is a convincing demonstration of chaos in a biological population. The book synthesizes an ecologically focused interdisciplinary blend of non-linear dynamics theory, statistics, and experimentation yielding results of uncommon clarity and rigor. Topics include fundamental issues that are of general and widespread importance to population biology and ecology. Detailed descriptions are included of the mathematical, statistical, and experimental steps they used to explore nonlinear dynamics in ecology. Beginning with a brief overview of chaos theory and its implications for ecology. The book continues by deriving and rigorously testing a mathematical model that is closely wedded to biological mechanisms of their research organism. Therefrom were generated a variety of predictions that are fundamental to chaos theory and experiments were designed and analyzed to test those predictions. Discussion of patterns in chaos and how they can be investigated using real data follows and book ends with a discussion of the salient lessons learned from this research program Book jacket.