Polynomial Identities And Combinatorial Methods
Download Polynomial Identities And Combinatorial Methods full books in PDF, epub, and Kindle. Read online free Polynomial Identities And Combinatorial Methods ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Antonio Giambruno |
Publisher | : CRC Press |
Total Pages | : 442 |
Release | : 2003-05-20 |
Genre | : Mathematics |
ISBN | : 9780203911549 |
Polynomial Identities and Combinatorial Methods presents a wide range of perspectives on topics ranging from ring theory and combinatorics to invariant theory and associative algebras. It covers recent breakthroughs and strategies impacting research on polynomial identities and identifies new concepts in algebraic combinatorics, invariant and representation theory, and Lie algebras and superalgebras for novel studies in the field. It presents intensive discussions on various methods and techniques relating the theory of polynomial identities to other branches of algebraic study and includes discussions on Hopf algebras and quantum polynomials, free algebras and Scheier varieties.
Author | : Onofrio Mario Di Vincenzo |
Publisher | : Springer Nature |
Total Pages | : 421 |
Release | : 2021-03-22 |
Genre | : Mathematics |
ISBN | : 3030631117 |
This volume contains the talks given at the INDAM workshop entitled "Polynomial identites in algebras", held in Rome in September 2019. The purpose of the book is to present the current state of the art in the theory of PI-algebras. The review of the classical results in the last few years has pointed out new perspectives for the development of the theory. In particular, the contributions emphasize on the computational and combinatorial aspects of the theory, its connection with invariant theory, representation theory, growth problems. It is addressed to researchers in the field.
Author | : A. Giambruno |
Publisher | : American Mathematical Soc. |
Total Pages | : 370 |
Release | : 2005 |
Genre | : Mathematics |
ISBN | : 0821838296 |
This book gives a state of the art approach to the study of polynomial identities satisfied by a given algebra by combining methods of ring theory, combinatorics, and representation theory of groups with analysis. The idea of applying analytical methods to the theory of polynomial identities appeared in the early 1970s and this approach has become one of the most powerful tools of the theory. A PI-algebra is any algebra satisfying at least one nontrivial polynomial identity. This includes the polynomial rings in one or several variables, the Grassmann algebra, finite-dimensional algebras, and many other algebras occurring naturally in mathematics. The core of the book is the proof that the sequence of co-dimensions of any PI-algebra has integral exponential growth - the PI-exponent of the algebra. Later chapters further apply these results to subjects such as a characterization of varieties of algebras having polynomial growth and a classification of varieties that are minimal for a given exponent.
Author | : Vladimir Shpilrain |
Publisher | : Springer Science & Business Media |
Total Pages | : 322 |
Release | : 2012-11-12 |
Genre | : Mathematics |
ISBN | : 038721724X |
The main purpose of this book is to show how ideas from combinatorial group theory have spread to two other areas of mathematics: the theory of Lie algebras and affine algebraic geometry. Some of these ideas, in turn, came to combinatorial group theory from low-dimensional topology in the beginning of the 20th Century.
Author | : Jonathan L. Gross |
Publisher | : CRC Press |
Total Pages | : 664 |
Release | : 2016-04-19 |
Genre | : Computers |
ISBN | : 1584887443 |
This combinatorics text provides in-depth coverage of recurrences, generating functions, partitions, and permutations, along with some of the most interesting graph and network topics, design constructions, and finite geometries. It presents the computer and software algorithms in pseudo-code and incorporates definitions, theorems, proofs, examples, and nearly 300 illustrations as pedagogical elements of the exposition. Numerous problems, solutions, and hints reinforce basic skills and assist with creative problem solving. The author also offers a website with extensive graph theory informational resources as well as a computational engine to help with calculations for some of the exercises.
Author | : Eli Aljadeff |
Publisher | : American Mathematical Soc. |
Total Pages | : 630 |
Release | : 2020-12-14 |
Genre | : Education |
ISBN | : 1470451743 |
A polynomial identity for an algebra (or a ring) A A is a polynomial in noncommutative variables that vanishes under any evaluation in A A. An algebra satisfying a nontrivial polynomial identity is called a PI algebra, and this is the main object of study in this book, which can be used by graduate students and researchers alike. The book is divided into four parts. Part 1 contains foundational material on representation theory and noncommutative algebra. In addition to setting the stage for the rest of the book, this part can be used for an introductory course in noncommutative algebra. An expert reader may use Part 1 as reference and start with the main topics in the remaining parts. Part 2 discusses the combinatorial aspects of the theory, the growth theorem, and Shirshov's bases. Here methods of representation theory of the symmetric group play a major role. Part 3 contains the main body of structure theorems for PI algebras, theorems of Kaplansky and Posner, the theory of central polynomials, M. Artin's theorem on Azumaya algebras, and the geometric part on the variety of semisimple representations, including the foundations of the theory of Cayley–Hamilton algebras. Part 4 is devoted first to the proof of the theorem of Razmyslov, Kemer, and Braun on the nilpotency of the nil radical for finitely generated PI algebras over Noetherian rings, then to the theory of Kemer and the Specht problem. Finally, the authors discuss PI exponent and codimension growth. This part uses some nontrivial analytic tools coming from probability theory. The appendix presents the counterexamples of Golod and Shafarevich to the Burnside problem.
Author | : Eli Aljadeff |
Publisher | : |
Total Pages | : |
Release | : 2020 |
Genre | : PI-algebras |
ISBN | : 9781470456955 |
Author | : Ernesto Damiani |
Publisher | : Springer Science & Business Media |
Total Pages | : 267 |
Release | : 2009-07-24 |
Genre | : Computers |
ISBN | : 0387887539 |
From Combinatorics to Philosophy: The Legacy of G. -C. Rota provides an assessment of G. -C. Rota's legacy to current international research issues in mathematics, philosophy and computer science. This volume includes chapters by leading researchers, as well as a number of invited research papers. Rota’s legacy connects European and Italian research communities to the USA by providing inspiration to several generations of researchers in combinatorics, philosophy and computer science. From Combinatorics to Philosophy: The Legacy of G. -C. Rota is of valuable interest to research institutions and university libraries worldwide. This book is also designed for advanced-level students in mathematics, computer science, and philosophy.
Author | : Alexei Kanel-Belov |
Publisher | : CRC Press |
Total Pages | : 436 |
Release | : 2015-10-22 |
Genre | : Mathematics |
ISBN | : 1498720099 |
Computational Aspects of Polynomial Identities: Volume l, Kemer's Theorems, 2nd Edition presents the underlying ideas in recent polynomial identity (PI)-theory and demonstrates the validity of the proofs of PI-theorems. This edition gives all the details involved in Kemer's proof of Specht's conjecture for affine PI-algebras in characteristic 0.The
Author | : Philippe Flajolet |
Publisher | : Cambridge University Press |
Total Pages | : 825 |
Release | : 2009-01-15 |
Genre | : Mathematics |
ISBN | : 1139477161 |
Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.