Plastic Deformation And Fracture Of Materials
Download Plastic Deformation And Fracture Of Materials full books in PDF, epub, and Kindle. Read online free Plastic Deformation And Fracture Of Materials ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Wolfgang Grellmann |
Publisher | : Springer |
Total Pages | : 537 |
Release | : 2017-07-12 |
Genre | : Technology & Engineering |
ISBN | : 3319418793 |
This book covers the most recent advances in the deformation and fracture behaviour of polymer material. It provides deeper insight into related morphology–property correlations of thermoplastics, elastomers and polymer resins. Each chapter of this book gives a comprehensive review of state-of-the-art methods of materials testing and diagnostics, tailored for plastic pipes, films and adhesive systems as well as elastomeric components and others. The investigation of deformation and fracture behaviour using the experimental methods of fracture mechanics has been the subject of intense research during the last decade. In a systematic manner, modern aspects of fracture mechanics in the industrial application of polymers for bridging basic research and industrial development are illustrated by multifarious examples of innovative materials usage. This book will be of value to scientists, engineers and in polymer materials science.
Author | : Richard W. Hertzberg |
Publisher | : |
Total Pages | : 714 |
Release | : 1989-01-17 |
Genre | : Science |
ISBN | : |
This Third Edition of the well-received engineering materials book has been completely updated, and now contains over 1,100 citations. Thorough enough to serve as a text, and up-to-date enough to serve as a reference. There is a new chapter on strengthening mechanisms in metals, new sections on composites and on superlattice dislocations, expanded treatment of cast and powder-produced conventional alloys, plastics, quantitative fractography, JIC and KIEAC test procedures, fatigue, and failure analysis. Includes examples and case histories.
Author | : Richard W. Hertzberg |
Publisher | : |
Total Pages | : 824 |
Release | : 1996 |
Genre | : Science |
ISBN | : |
This edition comprehensively updates the field of fracture mechanics by including details of the latest research programmes. It contains new material on non-metals, design issues and statistical aspects. The application of fracture mechanics to different types of materials is stressed.
Author | : Robert W. Cahn |
Publisher | : Wiley-VCH |
Total Pages | : 720 |
Release | : 1991 |
Genre | : Deformations (Mechanics) |
ISBN | : |
Materials Science and Technology A Comprehensive Treatment Edited by R.W. Cahn, P. Haasen, E.J. Kramer The 18-volume series ‘Materials Science and Technology' is the first in-depth, topic-oriented reference work devoted to this growing interdisciplinary field. A compendium of current, state-of-the-art information, it covers the most important classes of materials: metals, ceramics, glasses, polymers, semiconductors, and composites, from the fundamentals of perfect semiconductors via the physics of defects to "artificial" and amorphous semiconductors. Edited by internationally renowned figures in materials science, this series is sure to establish itself as a seminal work. Volume 6: This volume focuses on the mechanisms of plastic deformation and fatigue affecting the properties and performance of a wide variety of materials. Topics included are: flow stress and work hardening • dislocation patterning • solid solution strengthening • particle strengthening • superplasticity • inelastic deformation • cyclic deformation • fracture mechanisms • friction and wear • high-temperature deformation and creep • deformation and textures of metals at large strains
Author | : Jorge Luis González-Velázquez |
Publisher | : Springer Nature |
Total Pages | : 253 |
Release | : 2019-08-29 |
Genre | : Technology & Engineering |
ISBN | : 303029241X |
This book presents the theoretical concepts of stress and strain, as well as the strengthening and fracture mechanisms of engineering materials in an accessible level for non-expert readers, but without losing scientific rigor. This volume fills the gap between the specialized books on mechanical behavior, physical metallurgy and material science and engineering books on strength of materials, structural design and materials failure. Therefore it is intended for college students and practicing engineers that are learning for the first time the mechanical behavior and failure of engineering materials or wish to deepen their understanding on these topics. The book includes specific topics seldom covered in other books, such as: how to determine a state of stress, the relation between stress definition and mechanical design, or the theory behind the methods included in industrial standards to assess defects or to determine fatigue life. The emphasis is put into the link between scientific knowledge and practical applications, including solved problems of the main topics, such as stress and strain calculation. Mohr's Circle, yield criteria, fracture mechanics, fatigue and creep life prediction. The volume covers both the original findings in the field of mechanical behavior of engineering materials, and the most recent and widely accepted theories and techniques applied to this topic. At the beginning of some selected topics that by the author's judgement are transcendental for this field of study, the prime references are given, as well as a brief biographical semblance of those who were the pioneers or original contributors. Finally, the intention of this book is to be a textbook for undergraduate and graduate courses on Mechanical Behavior, Mechanical Metallurgy and Materials Science, as well as a consulting and/or training material for practicing engineers in industry that deal with mechanical design, materials selection, material processing, structural integrity assessment, and for researchers that incursion for the first time in the topics covered in this book.
Author | : A. S. Argon |
Publisher | : Cambridge University Press |
Total Pages | : 535 |
Release | : 2013-03-07 |
Genre | : Science |
ISBN | : 0521821843 |
A physical, mechanism-based presentation of the plasticity and fracture of polymers, covering industrial scale applications through to nanoscale biofluidic devices.
Author | : Wolfgang Grellmann |
Publisher | : Springer Science & Business Media |
Total Pages | : 640 |
Release | : 2001-06-20 |
Genre | : Mathematics |
ISBN | : 9783540412472 |
This book gives an overview of recent advances in the fracture mechanics of polymers, morphology property correlations, hybrid methods for polymer testing and polymer diagnostics, and biocompatible materials and medical prostheses, as well as application examples and limits.
Author | : R. J. Arsenault |
Publisher | : Elsevier |
Total Pages | : 525 |
Release | : 2013-10-22 |
Genre | : Technology & Engineering |
ISBN | : 1483218155 |
Treatise on Materials Science and Technology, Volume 6: Plastic Deformation of Materials covers the fundamental properties and characterization of materials, ranging from simple solids to complex heterophase systems. The book presents articles on the low temperature of deformation of bcc metals and their solid-solution alloys; the cyclic deformation of metals and alloys; and the high-temperature diffusion-controlled creep of some metals and alloys, with particular reference to the various creep mechanisms. The text also includes articles on superplasticity; the fatigue deformation of polymers; the low temperature deformation of crystalline nonmetals; and the recovery and recrystallization during high temperature deformation. Professional scientists and engineers, as well as graduate students in materials science and associated fields will find the book invaluable.
Author | : Alan F. Liu |
Publisher | : ASM International |
Total Pages | : 452 |
Release | : 2005-01-01 |
Genre | : Technology & Engineering |
ISBN | : 1615032525 |
Author | : Anoop Kumar Mukhopadhyay |
Publisher | : CRC Press |
Total Pages | : 373 |
Release | : 2024-08-27 |
Genre | : Technology & Engineering |
ISBN | : 1040104606 |
This book provides information on the basics of deformation and fracture in materials and on current, state-of-the-art experimental and numerical/theoretical methods, including data-driven approaches in the deformation and fracture study of materials. The blend of experimental test methods and numerical techniques to study deformation and fracture in materials is discussed. In addition, the application of data-driven approaches in predicting material performance in different types of loading and loading environments is illustrated. Features: Includes clear insights on deformation and fracture in materials, with clear explanations of mechanics and defects relating to them Provides effective treatments of modern numerical simulation methods Explores applications of data-driven approaches such as artificial intelligence, machine learning, and computer vision Reviews simple and basic experimental techniques to understand the concepts of deformation and fracture in materials Details modeling and simulation strategies of mechanics of materials at different scales This book is aimed at researchers and graduate students in fracture mechanics, finite element methods, and materials science.