Plasmodesmata

Plasmodesmata
Author: Yoselin Benitez-Alfonso
Publisher: Humana
Total Pages: 0
Release: 2023-04-13
Genre: Science
ISBN: 9781071621349

This fully updated book aims to facilitate the study of the nanochannels that connect plant cells, known as plasmodesmata, and to instigate new research that will further advance our knowledge of these structures. Beginning with the general structural composition and regulation of plasmodesmata as well as their role in plant development and disease, the volume continues with chapters exploring plasmodesmata architectures and distribution in cell interfaces, approaches to dissect plasmodesmata composition, protocols to quantify changes in plasmodesmata permeability using fluorescent tracers and mobile proteins, as well as a section with protocols that contribute to plasmodesmata research but fall outside the previous classifications. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, Plasmodesmata: Methods and Protocols, Second Edition serves as a vital guide for all plant scientists, both novice and expert, especially those studying the intricacies of cell-to-cell communication pathways.

Plasmodesmata

Plasmodesmata
Author: Aart J.E. van Bel
Publisher: Springer Science & Business Media
Total Pages: 364
Release: 2012-12-06
Genre: Science
ISBN: 3642600352

Plasmodesmata are minuscule plasma corridors between plant cells which are of paramount importance for transport, communication and signalling between cells. These nano-channels are responsible for the integrated action of cells within tissues and for the subdivision of the plant body into working symplast units. This book updates the wealth of new information in this rapidly expanding field. Reputed workers in the field discuss major techniques in plasmodesmatal research and describe recent discoveries on the ultrastructure, the functioning and the role of plasmodesmata in intracellular transport and communication, in cell differentiation, plant development and virus translocation.

Photosynthesis: Physiology and Metabolism

Photosynthesis: Physiology and Metabolism
Author: Richard C. Leegood
Publisher: Springer Science & Business Media
Total Pages: 630
Release: 2006-04-11
Genre: Science
ISBN: 0306481375

Photosynthesis: Physiology and Metabolism is the we have concentrated on the acquisition and ninth volume in theseries Advances in Photosynthesis metabolism of carbon. However, a full understanding (Series Editor, Govindjee). Several volumes in this of reactions involved in the conversion of to series have dealt with molecular and biophysical sugars requires an integrated view of metabolism. aspects of photosynthesis in the bacteria, algae and We have, therefore, commissioned international cyanobacteria, focussing largely on what have been authorities to write chapters on, for example, traditionally, though inaccurately, termed the ‘light interactionsbetween carbon and nitrogen metabolism, reactions’(Volume 1, The Molecular Biology of on respiration in photosynthetic tissues and on the Cyanobacteria;Volume2,AnoxygenicPhotosynthetic control of gene expression by metabolism. Photo- Bacteria, Volume 3, Biophysical Techniques in synthetic carbon assimilation is also one of the most Photosynthesis and Volume 7, The Molecular Biology rapid metabolic processes that occurs in plant cells, of the Chloroplasts and Mitochondria in Chlamy- and therefore has to be considered in relation to domonas). Volume 4 dealt with Oxygenic Photo- transport, whether it be the initial uptake of carbon, synthesis: The Light Reactions, and volume 5 with intracellular transport between organelles, inter- Photosynthesis and the Environment, whereas the cellular transport, as occurs in plants, or transport structure and function of lipids in photosynthesis of photosynthates through and out of the leaf. All was covered in Volume 6 of this series: Lipids in these aspects of transport are also covered in the Photosynthesis: Structure, Function and Genetics, book.

Specialised membrane domains of plasmodesmata, plant intercellular nanopores

Specialised membrane domains of plasmodesmata, plant intercellular nanopores
Author: Jens Tilsner
Publisher: Frontiers E-books
Total Pages: 173
Release: 2014-12-17
Genre: Botany
ISBN: 2889193683

Plasmodesmata (PD) are plant-specific intercellular nanopores defined by specialised domains of the plasma membrane (PM) and the endoplasmic reticulum (ER), both of which contain unique proteins, and probably different lipid compositions than the surrounding bulk membranes. The PD membranes form concentric tubules with a minimal outer diameter of only 50 nm, and the central ER strand constricted to ~10-15 nm, representing one of the narrowest stable membrane tubules in nature. This unique membrane architecture poses many biophysical, structural and functional questions. PM continuity across PD raises the question as to how a locally confined membrane site is established and maintained at PD. There is increasing evidence that the PM within PD may be enriched in membrane ‘rafts’ or TET web domains. Lipid rafts often function as signalling platforms, in line with the emerging view of PD as central players in plant defense responses. Lipid-lipid immiscibility could also provide a mechanism for membrane sub- compartmentalisation at PD. Intricate connections of the PM to the wall and the underlying cytoskeleton and ER may anchor the specialised domains locally. The ER within PD is even more strongly modified. Its extreme curvature suggests that it is stabilised by densely packed proteins, potentially members of the reticulon family that tubulate the cortical ER. The diameter of the constricted ER within PD is similar to membrane stalks in dynamin-mediated membrane fission during endocytosis and may need to be stabilised against spontaneous rupture. The function of this extreme membrane constriction, and the reasons why the ER is connected between plant cells remain unknown. Whilst the technically challenging search for the protein components of PD is ongoing, there has been significant recent progress in research on biological membranes that could benefit our understanding of PD function. With this Research Topic, we therefore aim to bring together researchers in the PD field and those in related areas, such as membrane biophysics, membrane composition and fluidity, protein-lipid interactions, lateral membrane heterogeneity, lipid rafts, membrane curvature, and membrane fusion/fission. We wish to address questions such as: - What mechanisms restrict lateral mobility of proteins and lipids along the PD membranes? - How can specific proteins be targeted to and turned over from membrane domains with restricted lateral access? - What elements (lipids, proteins, membrane curvature, packing order, thickness etc.) may contribute to the identity of PD membranes? - How do the structural and functional features of PD compare to other ER-PM contact sites? - How is the high curvature of the PD ER stabilised and what are possible functions of such a tightly constricted membrane tubule? - Do PD need to be prevented from spontaneous collapse and sealing? - What technologies are available to address these questions that can underpin PD research? We welcome interested individuals to contribute their expertise and develop new hypotheses on the particular biological and biophysical questions posed by PD. We are particularly looking for articles (Original Research Articles, Technical Advances and State-of-the-Art reviews) that would expand on or challenge current perceptions of PD and stimulate discussion.

Concepts in Cell Biology

Concepts in Cell Biology
Author: Vaidurya Pratap Sahi
Publisher:
Total Pages: 290
Release: 2018
Genre: Biology
ISBN: 9783319699455

This book discusses central concepts and theories in cell biology from the ancient past to the 21st century, based on the premise that understanding the works of scientists like Hooke, Hofmeister, Caspary, Strasburger, Sachs, Schleiden, Schwann, Mendel, Nemec, McClintock, etc. in the context of the latest advances in plant cell biology will help provide valuable new insights. Plants have been an object of study since the roots of the Greek, Chinese and Indian cultures. Since the term "cell" was first coined by Robert Hooke, 350 years ago in Micrographia, the study of plant cell biology has moved ahead at a tremendous pace. The field of cell biology owes its genesis to physics, which through microscopy has been a vital source for piquing scientists' interest in the biology of the cell. Today, with the technical advances we have made in the field of optics, it is even possible to observe life on a nanoscale. From Hooke's observations of cells and his inadvertent discovery of the cell wall, we have since moved forward to engineering plants with modified cell walls. Studies on the chloroplast have also gone from Julius von Sachs' experiments with chloroplast, to using chloroplast engineering to deliver higher crop yields. Similarly, advances in fluorescent microscopy have made it far easier to observe organelles like chloroplast (once studied by Sachs) or actin (observed by Bohumil Nemec). If physics in the form of cell biology has been responsible for one half of this historical development, biochemistry has surely been the other.

Annual Plant Reviews, Plasmodesmata

Annual Plant Reviews, Plasmodesmata
Author: Karl J. Oparka
Publisher: John Wiley & Sons
Total Pages: 328
Release: 2008-04-15
Genre: Science
ISBN: 0470994142

Since their discovery over 100 years ago, plasmodesmata have been the focus of intense investigation. Plasmodesmata are unique to plants and form an intercellular continuum for the transport of solutes, signals and ribonucleoprotein complexes. It is now clear that plasmodesmata formation and regulation are central to a diverse range of plant functions that include developmental programming, host-pathogen interactions and systemic RNA signaling. This book provides a state-of-the-art overview of the diverse forms and functions of plasmodesmata. It covers the structure and evolution of plasmodesmata, their role in plant development and solute transport, and their central function in systemic signaling via the phloem. It includes critical evaluations of current methods used to study intercellular transport via plasmodesmata. The volume is directed at researchers and professionals in plant cell biology, plant molecular biology, plant physiology and plant pathology.

Symplasmic Transport in Vascular Plants

Symplasmic Transport in Vascular Plants
Author: Katarzyna Sokołowska
Publisher: Springer Science & Business Media
Total Pages: 265
Release: 2013-07-25
Genre: Science
ISBN: 1461477654

Concentrates on symplasmic transport of small molecules, although the cell-to-cell transport of macromolecules will also be discussed. This book characterize the efficiency of symplasmic transport, mechanisms of molecule passage via plasmodesmata, and the external and internal factors that regulate plasmodesmatal conductivity. In this context, the book focused on the role of symplasmic domains in plant development, as well as the influence of environmental stresses on the plasmodesmata. Besides cell-to-cell symplasmic transport, the significance of long-distance symplasmic transport of solutes in phloem elements is also reviewed. Symplasmic Transport in Vascular Plants presents the mechanism of phloem transport, the processes of symplasmic loading and unloading, as well as the role of pre- and post-phloem transport, with special attention paid to symplasmic transport in wood. Finally, the relevance of the spread of both macromolecules and viruses, via plasmodesmata, is presented.​

Intercellular and Interorganellar Transfer and Communication in Biology and Medicine

Intercellular and Interorganellar Transfer and Communication in Biology and Medicine
Author: Malgorzata Kloc
Publisher: Springer Nature
Total Pages: 574
Release: 2024
Genre: Cell differentiation
ISBN: 3031620364

This volume covers recent developments on the role, composition, and functional significance of intercellular and interorganellar transfer. It highlights the involvement of intercellular and interorganellar transfer in cell and developmental biology, differentiation, pathogen dissemination, shaping the genetic makeup of organisms, and the development of various diseases. Animals and plants evolved different communication mechanisms and transfer of molecules and organelles between cells and between organelles within the individual cells. Tunneling nanotubes (TNTs) in animals, discovered as recently as 2004, and their functional equivalent in plants, plasmodesmata, discovered over 100 years ago, are the membranous bridges that mediate the transfer of organelles, membrane patches, vesicles, DNA/RNA, and different molecules between cells. In addition, there are other means of transfer and communication between the cells, such as cytonemes, airinames, extracellular vesicles (exosomes), and others. Variations in cytoskeletal composition, morphology, modality, and connected cells suggest that these structures play a role in development, establishment of cell fate, progenitor cell differentiation, cell reprogramming, ferroptosis, generation of cancer stem cells, and various diseases. The exchange of intact membrane patches (trogocytosis) between cells of the immune system may modify the immune response. Additionally, the transfer of genetic information between nucleus and organelles and cells of different species can shape the species and evolutionary outcome. Viral and bacterial pathogens can hijack the inter-cellular transfer routes to spread more efficiently. Cell-to-cell transfer of animal and plant pathogens can also occur by the virological synapse (VS). These specialized pathogen-induced structures share similarities and differences with neurological and immunological synapses.