Plasma Synthesis And Self Assembly Of Magnetic Nanoparticles
Download Plasma Synthesis And Self Assembly Of Magnetic Nanoparticles full books in PDF, epub, and Kindle. Read online free Plasma Synthesis And Self Assembly Of Magnetic Nanoparticles ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Sebastian Ekeroth |
Publisher | : Linköping University Electronic Press |
Total Pages | : 79 |
Release | : 2019-11-08 |
Genre | : |
ISBN | : 9176850099 |
Nanomaterials are important tools for enabling technological progress as they can provide dramatically different properties as compared to the bulk counterparts. The field of nanoparticles is one of the most investigated within nanomaterials, thanks to the existing, relatively simple, means of manufacturing. In this thesis, high-power pulsed hollow cathode sputtering is used to nucleate and grow magnetic nanoparticles in a plasma. This sputtering technique provides a high degree of ionization of the sputtered material, which has previously been shown to aid in the growth of the nanoparticles. The magnetic properties of the particles are utilized and makes it possible for the grown particles to act as building blocks for self-assembly into more sophisticated nano structures, particularly when an external magnetic field is applied. These structures created are termed “nanowires” or “nanotrusses”, depending on the level of branching and inter-linking that occurs. Several different elements have been investigated in this thesis. In a novel approach, it is shown how nanoparticles with more advanced structures, and containing material from two hollow cathodes, can be fabricated using high-power pulses. The dual-element particles are achieved by using two distinct and individual elemental cathodes, and a pulse process that allows tuning of individual pulses separately to them. Nanoparticles grown and investigated are Fe, Ni, Pt, Fe-Ni and Ni-Pt. Alternatively, the addition of oxygen to the process allows the formation of oxide or hybrid metal oxide – metal particles. For all nanoparticles containing several elements, it is demonstrated that the stoichiometry can be easily varied, either by the amount of reactive gas let into the process or by tuning the amount of sputtered material through adjusting the electric power supplied to the different cathodes. One aim of the presented work is to find a suitable material for the use as a catalyst in the production of H2 gas through the process of water splitting. H2 is a good candidate to replace fossil fuels as an energy carrier. However, rare elements (such as Ir or Pt) needs to be used as the catalyst, otherwise a high overpotential is required for the splitting to occur, leading to a low efficiency. This work demonstrates a possible route to avoid this, by using nanomaterials to increase the surface-to-volume ratio, as well as optimizing the elemental ratio between different materials to lower the amount of noble elements required.
Author | : Jean Daillant |
Publisher | : Springer Science & Business Media |
Total Pages | : 347 |
Release | : 2003-07-01 |
Genre | : Science |
ISBN | : 3540486968 |
The reflection of and neutrons from surfaces has existed as an x-rays exp- imental for almost it is in the last technique fifty Nevertheless, only years. decade that these methods have become as of enormously popular probes This the surfaces and interfaces. to be due to of several appears convergence of intense different circumstances. These include the more n- availability be measured orders tron and sources that can over (so reflectivity x-ray many of and the much weaker surface diffuse can now also be magnitude scattering of thin films and studied in some the detail); growing importance multil- basic the realization of the ers in both and technology research; important which in the of surfaces and and role roughness plays properties interfaces; the of statistical models to characterize the of finally development topology its and its characterization from on roughness, dependence growth processes The of and to surface scattering experiments. ability x-rays neutro4s study four five orders of in scale of surfaces over to magnitude length regardless their and also their to ability probe environment, temperature, pressure, etc. , makes these the choice for buried interfaces often probes preferred obtaining information about the microstructure of often in statistical a global surfaces, the local This is manner to complementary imaging microscopy techniques, of such studies in the literature witnessed the veritable by explosion published the last few Thus these lectures will useful for over a resource years.
Author | : Katsuhiko Ariga |
Publisher | : Elsevier |
Total Pages | : 648 |
Release | : 2023-12-07 |
Genre | : Technology & Engineering |
ISBN | : 0323994733 |
Materials Nanoarchitectonics: From Integrated Molecular Systems to Advanced Devices provides the latest information on the design and molecular manipulation of self-organized hierarchically structured systems using tailor-made nanoscale materials as structural and functional units. The book is organized into three main sections that focus on molecular design of building blocks and hybrid materials, formation of nanostructures, and applications and devices. Bringing together emerging materials, synthetic aspects, nanostructure strategies, and applications, the book aims to support further progress, by offering different perspectives and a strong interdisciplinary approach to this rapidly growing area of innovation. This is an extremely valuable resource for researchers, advanced students, and scientists in industry, with an interest in nanoarchitectonics, nanostructures, and nanomaterials, or across the areas of nanotechnology, chemistry, surface science, polymer science, electrical engineering, physics, chemical engineering, and materials science. - Offers a nanoarchitectonic perspective on emerging fields, such as metal-organic frameworks, porous polymer materials, or biomimetic nanostructures - Discusses different approaches to utilizing "soft chemistry" as a source for hierarchically organized materials - Offers an interdisciplinary approach to the design and construction of integrated chemical nano systems - Discusses novel approaches towards the creation of complex multiscale architectures
Author | : Andreas Schmidt-Ott |
Publisher | : CRC Press |
Total Pages | : 293 |
Release | : 2019-12-19 |
Genre | : Science |
ISBN | : 1000730441 |
Spark ablation has been used worldwide for decades. However, in many fields, the special properties of nanoparticles, which come into play especially for sizes
Author | : Jayanta Kumar Patra |
Publisher | : Springer Nature |
Total Pages | : 395 |
Release | : 2020-04-06 |
Genre | : Science |
ISBN | : 3030392465 |
Nanotechnology is the application of science to control matter at the molecular level. It has become one of the most promising applied technologies in all areas of science. Nanoparticles have multi-functional properties and have created very interesting applications in various fields such as medicine, nutrition, bioenergy, agriculture and the environment. But the biogenic syntheses of monodispersed nanoparticles with specific sizes and shapes have been a challenge in biomaterial science. Nanoparticles are of great interest due to their extremely small size and large surface-to-volume ratio, which lead to both chemical and physical differences in their properties (e.g., mechanical properties, biological and sterical properties, catalytic activity, thermal and electrical conductivity, optical absorption and melting point) compared to bulk of the same chemical composition. Recently, however, synthesizing metal nanoparticles using green technology via microorganisms, plants, viruses, and so on, has been extensively studied and has become recognized as a green and efficient way for further exploiting biological systems as convenient nanofactories. Thus the biological synthesis of nanoparticles is increasingly regarded as a rapid, ecofriendly, and easily scaled-up technology. Today researchers are developing new techniques and materials using nanotechnology that may be suitable for plants to boost their native functions. Recently, biological nanoparticles were found to be more pharmacologically active than physico-chemically synthesized nanoparticles. Various applications of biosynthesized nanoparticles have been discovered, especially in the field of biomedical research, such as applications to specific delivery of drugs, use for tumor detection, angiogenesis, genetic disease and genetic disorder diagnosis, photoimaging, and photothermal therapy. Further, iron oxide nanoparticles have been applied to cancer therapy, hyperthermia, drug delivery, tissue repair, cell labeling, targeting and immunoassays, detoxification of biological fluids, magnetic resonance imaging, and magnetically responsive drug delivery therapy. Nanoparticle synthesis for plant byproducts for biomedical applications has vast potential. This book offers researchers in plant science and biomedicine the latest research and opportunity to develop new tools for the synthesis of environmentally friendly and cost-effective nanoparticles for applications in biomedicine as well as other various fields.
Author | : Guowei Yang |
Publisher | : CRC Press |
Total Pages | : 1166 |
Release | : 2012-02-22 |
Genre | : Science |
ISBN | : 9814241520 |
This book focuses on the fundamental concepts and physical and chemical aspects of pulsed laser ablation of solid targets in liquid environments and its applications in the preparation of nanomaterials and fabrication of nanostructures. The areas of focus include basic thermodynamic and kinetic processes of laser ablation in liquids, and its applic
Author | : Ali Demir Sezer |
Publisher | : BoD – Books on Demand |
Total Pages | : 516 |
Release | : 2012-10-31 |
Genre | : Medical |
ISBN | : 9535108107 |
This contribution book collects reviews and original articles from eminent experts working in the interdisciplinary arena of novel drug delivery systems and their uses. From their direct and recent experience, the readers can achieve a wide vision on the new and ongoing potentialities of different drug delivery systems. Since the advent of analytical techniques and capabilities to measure particle sizes in nanometer ranges, there has been tremendous interest in the use of nanoparticles for more efficient methods of drug delivery. On the other hand, this reference discusses advances in the design, optimization, and adaptation of gene delivery systems for the treatment of cancer, cardiovascular, pulmonary, genetic, and infectious diseases, and considers assessment and review procedures involved in the development of gene-based pharmaceuticals.
Author | : American Chemical Society. Meeting |
Publisher | : |
Total Pages | : 474 |
Release | : 2008 |
Genre | : Language Arts & Disciplines |
ISBN | : |
The book summarizes recent advances in methods to synthesize, stabilize, passivate and functionalize diverse nanoparticles from metals, metal oxides, semiconductors, polymers, organics and biomolecules. A wide range of potential appplications with nanoparticles as building blocks are described.
Author | : Imran Khan |
Publisher | : Elsevier |
Total Pages | : 636 |
Release | : 2024-03-20 |
Genre | : Technology & Engineering |
ISBN | : 032390341X |
Magnetic Nanoparticles and Polymer Nanocomposites: Fundamentals and Biological, Environmental and Energy Applications focuses on the manufacturing and design of innovative magnetic polymeric nanocomposite materials for a broad range of different applications. These materials have truly outstanding and sustainable properties unlike other composites because they are combined with both organic (polymer matrix) and inorganic (semiconductor nanoparticles) materials to form a sustainable composite material. The book's focus is on magnetic semiconductor and polymer nanocomposites made from bioresorbable and biocompatible polymers, modified with magnetic nanoparticles. This book provides detailed knowledge on the modern research application of magnetic semiconductor and polymeric nanocomposites that have tremendous commercial value. In addition, these nanocomposite materials are also a good source for the renewable energy-based industry. - Covers magnetic nanoparticles and polymer nanocomposites in environmental, renewable energy, water treatment, energy storage and biomedical applications - Provides fundamental knowledge on design, synthesis, properties investigation, applications and manufacturing - Emphasizes recent advances on magnetic nanoparticles and polymer nanocomposites
Author | : Abbas Hamrang |
Publisher | : CRC Press |
Total Pages | : 300 |
Release | : 2016-04-19 |
Genre | : Science |
ISBN | : 148223937X |
This volume highlights the latest developments and trends in advanced non-classical materials and structures. It presents the developments of advanced materials and respective tools to characterize and predict the material properties and behavior. It also includes original, theoretical, and important experimental results that use non-routine method