The Physiological Ecology of Woody Plants

The Physiological Ecology of Woody Plants
Author: Theodore T. Kozlowski
Publisher: Academic Press
Total Pages: 678
Release: 2012-12-02
Genre: Science
ISBN: 0323138004

The efficient management of trees and other woody plants can be improved given an understanding of the physiological processes that control growth, the complex environmental factors that influence those processes, and our ability to regulate and maintain environmental conditions that facilitate growth. Emphasizes genetic and environmental interactions that influence woody plant growth Outlines responses of individual trees and tree communities to environmental stress Explores cultural practices useful for efficient management of shade, forest, and fruit trees, woody vines, and shrubs

Physiological Ecology of Forest Production

Physiological Ecology of Forest Production
Author: J. J. Landsberg
Publisher: Academic Press
Total Pages: 352
Release: 2010-11-26
Genre: Technology & Engineering
ISBN: 0080922546

Process-based models open the way to useful predictions of the future growth rate of forests and provide a means of assessing the probable effects of variations in climate and management on forest productivity. As such they have the potential to overcome the limitations of conventional forest growth and yield models, which are based on mensuration data and assume that climate and atmospheric CO2 concentrations will be the same in the future as they are now. This book discusses the basic physiological processes that determine the growth of plants, the way they are affected by environmental factors and how we can improve processes that are well-understood such as growth from leaf to stand level and productivity. A theme that runs through the book is integration to show a clear relationship between photosynthesis, respiration, plant nutrient requirements, transpiration, water relations and other factors affecting plant growth that are often looked at separately. This integrated approach will provide the most comprehensive source for process-based modelling, which is valuable to ecologists, plant physiologists, forest planners and environmental scientists. Includes explanations of inherently mathematical models, aided by the use of graphs and diagrams illustrating causal interactions and by examples implemented as Excel spreadsheets Uses a process-based model as a framework for explaining the mechanisms underlying plant growth Integrated approach provides a clear and relatively simple treatment

Response of Plants to Multiple Stresses

Response of Plants to Multiple Stresses
Author: William E. Winner
Publisher: Academic Press
Total Pages: 438
Release: 2012-12-02
Genre: Science
ISBN: 0080924832

This book presents a whole-plant perspective on plant integrated responses to multiple stresses, including an analysis of how plants have evolved growth forms and phenological responses to cope with changing stress patterns in natural environments. Explores stress responses at both the structural and process levels Outlines structural, phenological, and physiological responses that optimize production under multiple stresses Combines physiological and evolutionary perspectives

Trees in a Changing Environment

Trees in a Changing Environment
Author: Michael Tausz
Publisher: Springer
Total Pages: 293
Release: 2014-08-26
Genre: Science
ISBN: 9401791007

This book delivers current state-of-the-science knowledge of tree ecophysiology, with particular emphasis on adaptation to a novel future physical and chemical environment. Unlike the focus of most books on the topic, this considers air chemistry changes (O3, NOx, and N deposition) in addition to elevated CO2 effects and its secondary effects of elevated temperature. The authors have addressed two systems essential for plant life: water handling capacity from the perspective of water transport; the coupling of xylem and phloem water potential and flow; water and nutrition uptake via likely changes in mycorrhizal relationships; control of water loss via stomata and its retention via cellular regulation; and within plant carbon dynamics from the perspective of environmental limitations to growth, allocation to defences, and changes in partitioning to respiration. The authors offer expert knowledge and insight to develop likely outcomes within the context of many unknowns. We offer this comprehensive analysis of tree responses and their capacity to respond to environmental changes to provide a better insight in understanding likelihood for survival, as well as planning for the future with long-lived, stationary organisms adapted to the past: trees.

Plant Physiological Ecology

Plant Physiological Ecology
Author: H. Lambers
Publisher: Springer Science & Business Media
Total Pages: 576
Release: 1998
Genre: Nature
ISBN: 9780387983264

The growth, reproduction and geographical distribution of plants are profoundly influenced by their physiological ecology: the interaction with the surrounding physical, chemical and biological environments. This textbook is notable in emphasizing that the mechanisms underlying plant physiological ecology can be found at the levels of biochemistry, biophysics, molecular biology and whole-plant physiology. At the same time, the integrative power of physiological ecology is well-suited to assess the costs, benefits and consequences of modifying plants for human needs, and to evaluate the role of plants in ecosystems.Plant Physiological Ecology begins with the primary processes of carbon metabolism and transport, plant-water relations, and energy balance. After considering individual leaves and whole plants, these physiological processes are then scaled up to the level of the canopy. Subsequent chapters discuss mineral nutrition and the ways in which plants cope with nutrient-deficient or toxic soils. The book then looks at patterns of growth and allocation, life-history traits, and interactions between plants and other organisms. Later chapters deal with traits that affect decomposition of plant material and with plant physiological ecology at the level of ecosystems and global environmental processes.Plant Physiological Ecology features numerous boxed entries that provide extended discussions of selected issues, a glossary, and numerous references to the primary and review literature. The significant new text is suitable for use in plant ecology courses, as well as classes ranging from plant physiology to plant molecular biology.

Carbon Dioxide and Environmental Stress

Carbon Dioxide and Environmental Stress
Author: Luo Yiqi
Publisher: Elsevier
Total Pages: 434
Release: 1999-04-13
Genre: Science
ISBN: 0080500714

This book focuses on the interactive effects of environmental stresses with plant and ecosystem functions, especially with respect to changes in the abundance of carbon dioxide. The interaction of stresses with elevated carbon dioxide are presented from the cellular through whole plant ecosystem level. The book carefully considers not only the responses of the above-ground portion of the plant, but also emphasizes the critical role of below-ground (rhizosphere) components (e.g., roots, microbes, soil) in determining the nature and magnitude of these interactions. * Will rising CO2 alter the importance of environmental stress in natural and agricultural ecosystems?* Will environmental stress on plants reduce their capacity to remove CO2 from the atmosphere?* Are some stresses more important than others as we concern ourselves with global change?* Can we develop predictive models useful for scientists and policy-makers?* Where should future research efforts be focused?

Environmental Stress in Plants

Environmental Stress in Plants
Author: Joe H. Cherry
Publisher: Springer Science & Business Media
Total Pages: 360
Release: 2013-06-29
Genre: Technology & Engineering
ISBN: 3642731635

Environmental stresses represent the most limiting factors to agricultural productivity worldwide. Their impact is not only on presently cultivated crops, they are also significant barriers to the introduction of crop plants in noncultivated areas. A significant global problem in the improvement of agriculture is the major variation in annual crop yields due to variations in environmental stresses such as drought, flooding, salinity, and temperature variations. This summary presents current background and research knowledge on all important environmental stresses and their respective influence on plant growth, development and crop yield as well as on biochemical and physiological events within plant tissues in reaction to changing environmental conditions.

Physiological Responses to Abiotic and Biotic Stress in Forest Trees

Physiological Responses to Abiotic and Biotic Stress in Forest Trees
Author: Heinz Rennenberg
Publisher: MDPI
Total Pages: 294
Release: 2019-10-01
Genre: Technology & Engineering
ISBN: 3039215140

As sessile organisms, plants have to cope with a multitude of natural and anthropogenic forms of stress in their environment. Due to their longevity, this is of particular significance for trees. As a consequence, trees develop an orchestra of resilience and resistance mechanisms to biotic and abiotic stresses in order to support their growth and development in a constantly changing atmospheric and pedospheric environment. The objective of this Special Issue of Forests is to summarize state-of-art knowledge and report the current progress on the processes that determine the resilience and resistance of trees from different zonobiomes as well as all forms of biotic and abiotic stress from the molecular to the whole tree level.

Plant Physiological Ecology

Plant Physiological Ecology
Author: Hans Lambers
Publisher: Springer Science & Business Media
Total Pages: 624
Release: 2008-10-08
Genre: Science
ISBN: 0387783415

Box 9E. 1 Continued FIGURE 2. The C–S–R triangle model (Grime 1979). The strategies at the three corners are C, competiti- winning species; S, stress-tolerating s- cies; R,ruderalspecies. Particular species can engage in any mixture of these three primary strategies, and the m- ture is described by their position within the triangle. comment briefly on some other dimensions that Grime’s (1977) triangle (Fig. 2) (see also Sects. 6. 1 are not yet so well understood. and 6. 3 of Chapter 7 on growth and allocation) is a two-dimensional scheme. A C—S axis (Com- tition-winning species to Stress-tolerating spe- Leaf Economics Spectrum cies) reflects adaptation to favorable vs. unfavorable sites for plant growth, and an R- Five traits that are coordinated across species are axis (Ruderal species) reflects adaptation to leaf mass per area (LMA), leaf life-span, leaf N disturbance. concentration, and potential photosynthesis and dark respiration on a mass basis. In the five-trait Trait-Dimensions space,79%ofallvariation worldwideliesalonga single main axis (Fig. 33 of Chapter 2A on photo- A recent trend in plant strategy thinking has synthesis; Wright et al. 2004). Species with low been trait-dimensions, that is, spectra of varia- LMA tend to have short leaf life-spans, high leaf tion with respect to measurable traits. Compared nutrient concentrations, and high potential rates of mass-based photosynthesis. These species with category schemes, such as Raunkiaer’s, trait occur at the ‘‘quick-return’’ end of the leaf e- dimensions have the merit of capturing cont- nomics spectrum.