Photosynthetic Protein Complexes

Photosynthetic Protein Complexes
Author: Petra Fromme
Publisher: John Wiley & Sons
Total Pages: 386
Release: 2008-11-21
Genre: Science
ISBN: 3527623477

Perfectly timed, this handbook covers many important aspects of the topic that have only recently been understood -- making this a truly comprehensive work. With its extensive use of color, it surveys the most important proteins involved in photosynthesis, discussing the structural information we have at our disposal. Most chapters are dedicated to one protein, while a few also summarize general associated concepts. The book also has an accompanying website that contains data files and animations to allow readers to visualize many of the complicated proteins presented. A must for anyone studying photosynthesis and structural biology, as well as those working in the plant and crop biotechnology industry.

Light Harvesting in Photosynthesis

Light Harvesting in Photosynthesis
Author: Roberta Croce
Publisher: CRC Press
Total Pages: 778
Release: 2018-01-12
Genre: Science
ISBN: 1351242873

This landmark collective work introduces the physical, chemical, and biological principles underlying photosynthesis: light absorption, excitation energy transfer, and charge separation. It begins with an introduction to properties of various pigments, and the pigment proteins in plant, algae, and bacterial systems. It addresses the underlying physics of light harvesting and key spectroscopic methods, including data analysis. It discusses assembly of the natural system, its energy transfer properties, and regulatory mechanisms. It also addresses light-harvesting in artificial systems and the impact of photosynthesis on our environment. The chapter authors are amongst the field’s world recognized experts. Chapters are divided into five main parts, the first focused on pigments, their properties and biosynthesis, and the second section looking at photosynthetic proteins, including light harvesting in higher plants, algae, cyanobacteria, and green bacteria. The third part turns to energy transfer and electron transport, discussing modeling approaches, quantum aspects, photoinduced electron transfer, and redox potential modulation, followed by a section on experimental spectroscopy in light harvesting research. The concluding final section includes chapters on artificial photosynthesis, with topics such as use of cyanobacteria and algae for sustainable energy production. Robert Croce is Head of the Biophysics Group and full professor in biophysics of photosynthesis/energy at Vrije Universiteit, Amsterdam. Rienk van Grondelle is full professor at Vrije Universiteit, Amsterdam. Herbert van Amerongen is full professor of biophysics in the Department of Agrotechnology and Food Sciences at Wageningen University, where he is also director of the MicroSpectroscopy Research Facility. Ivo van Stokkum is associate professor in the Department of Physics and Astronomy, Faculty of Sciences, at Vrije Universiteit, Amsterdam.

Regulation of Photosynthesis

Regulation of Photosynthesis
Author: Eva-Mari Aro
Publisher: Springer Science & Business Media
Total Pages: 624
Release: 2006-04-11
Genre: Science
ISBN: 0306481480

This book covers the expression of photosynthesis related genes including regulation both at transcriptional and translational levels. It reviews biogenesis, turnover, and senescence of thylakoid pigment protein complexes and highlights some crucial regulatory steps in carbon metabolism.

The Photosynthetic Bacterial Reaction Center

The Photosynthetic Bacterial Reaction Center
Author: J. Breton
Publisher: Springer Science & Business Media
Total Pages: 433
Release: 2013-06-29
Genre: Science
ISBN: 1489908153

This volume contains the contributions from the speakers at the NATO Advanced Research Workshop on "Structure of the Photosynthetic Bacterial Reaction Center X-ray Crystallography and Optical Spectroscopy with Polarized Light" which was held at the "Maison d'Hotes" of the Centre d'Etudes Nucleaires de Cadarache in the South of France, 20-25 September, 1987. This meeting continued in the spirit of a previous workshop which took place in Feldafing (FRG), March 1985. Photosynthetic reaction centers are intrinsic membrane proteins which, by performing a photoinduced transmembrane charge separation, are responsible for the conversion and storage of solar energy. Since the pioneering work of Reed and Clayton (1968) on the isolation of the reaction center from photosynthetic bacteria, optical spectroscopy with polarized light has been one of the main tools used to investigate the geometrical arrangement of the various chromophores in these systems. The recent elucidation by X-ray crystallography of the structure of several bacterial reaction centers, a breakthrough initiated by Michel and Deisenhofer, has provided us with the atomic coordinates of the pigments and some details about their interactions with neighboring aminoacid residues. This essential step has given a large impetus both to experimentalists and to theoreticians who are now attempting to relate the X-ray structural model to the optical properties of the reaction center and ultimately to its primary biological function.

Photosynthesis

Photosynthesis
Author: Bacon Ke
Publisher: Springer Science & Business Media
Total Pages: 784
Release: 2006-04-11
Genre: Science
ISBN: 0306481367

Photosynthesis: Photobiochemistry and Photobiophysics is the first single-authored book in the Advances in Photosynthesis Series. It provides an overview of the light reactions and electron transfers in both oxygenic and anoxygenic photosynthesis. The scope of the book is characterized by the time frame in which the light reactions and the subsequent electron transfers take place, namely between =10sup-12/sup and =10-3 second. The book is divided into five parts: An Overview; Bacterial Photosynthesis; Photosystem II & Oxygen Evolution; Photosystem I; and Proton Transport and Photophosphorylation. In discussing the structure and function of various protein complexes, we begin with an introductory chapter, followed by chapters on light-harvesting complexes, the primary electron donors and the primary electron acceptors, and finally the secondary electron donors. The discussion on electron acceptors is presented in the order of their discovery to convey a sense of history, in parallel with the advancement in instrumentation of increasing time resolution. The book includes a large number of stereo pictures showing the three-dimensional structure of various photosynthetic proteins, which can be easily viewed with unaided eyes. This book is designed to be used as a textbook in a graduate or upper-division undergraduate course in photosynthesis, photobiology, plant physiology, biochemistry, and biophysics; it is equally suitable as a resource book for students, teachers, and researchers in the areas of molecular and cellular biology, integrative biology, microbiology, and plant biology.

The Photosynthetic Membrane

The Photosynthetic Membrane
Author: Alexander V. Ruban
Publisher: John Wiley & Sons
Total Pages: 412
Release: 2012-09-17
Genre: Science
ISBN: 1118447603

The proteins that gather light for plant photosynthesis are embedded within cell membranes in a site called the thylakoid membrane (or the "photosynthetic membrane"). These proteins form the light harvesting antenna that feeds with energy a number of vital photosynthetic processes such as water oxidation and oxygen evolution, the pumping of protons across the thylakoid membranes coupled with the electron transport chain of the photosystems and cytochrome b6f complex, and ATP synthesis by ATP synthase utilizing the generated proton gradient. The Photosynthetic Membrane: Molecular Mechanisms and Biophysics of Light Harvesting is an introduction to the fundamental design and function of the light harvesting photosynthetic membrane, one of the most common and most important structures of life. It describes the underlying structure of the membrane, the variety and roles of the membrane proteins, the atomic structures of light harvesting complexes and their macromolecular assemblies, the molecular mechanisms and dynamics of light harvesting and primary energy transformations, and the broad range of adaptations to different light environments. The book shows, using the example of the photosynthetic membrane, how complex biological structures utilize principles of chemistry and physics in order to carry out biological functions. The Photosynthetic Membrane: Molecular Mechanisms of Light Harvesting will appeal to a wide audience of undergraduate and postgraduate students as well as researchers working in the fields of biochemistry, molecular biology, biophysics, plant science and bioengineering.

Light-Harvesting Antennas in Photosynthesis

Light-Harvesting Antennas in Photosynthesis
Author: B.R. Green
Publisher: Springer Science & Business Media
Total Pages: 533
Release: 2013-06-29
Genre: Science
ISBN: 9401720878

Light-Harvesting Antennas in Photosynthesis is concerned with the most important process on earth - the harvesting of light energy by photosynthetic organisms. This book provides a comprehensive treatment of all aspects of photosynthetic light-harvesting antennas, from the biophysical mechanisms of light absorption and energy transfer to the structure, biosynthesis and regulation of antenna systems in whole organisms. It sets the great variety of antenna pigment-protein complexes in their evolutionary context and at the same time brings in the latest hi-tech developments. The book is unique in the degree to which it emphasizes the integration of molecular biological, biochemical and biophysical approaches. Overall, a well-organized, understandable, and comprehensive volume. It will be a valuable resource for both graduate students and their professors, and a helpful library reference book for undergraduates.

Photosynthesis And Bioenergetics

Photosynthesis And Bioenergetics
Author: James Barber
Publisher: World Scientific
Total Pages: 367
Release: 2017-10-27
Genre: Science
ISBN: 9813230312

This book is a tribute to three outstanding scientists, Professors Jan Anderson FRS, Leslie Dutton FRS and John Walker FRS, Nobel Laureate. Covering some of the most recent advances in the fields of Bioenergetics and Photosynthesis, this book is a compilation of contributions from leading scientists actively involved in understanding the natural biological processes associated with the flow of energy in biological cells. The lectures found in this significant volume were presented at a meeting in March 2016 in Singapore to commemorate the outstanding research in this area.The contents begin with the ideas, specially the contribution from Nobel Laureate Rudolph Marcus, who is well-known for creating the theory of electron transport reactions. This is followed by contributions of many others on various aspects of respiratory and photosynthetic transport chains as well as the dynamic regulation of light harvesting and electron transport events in oxygenic photosynthesis. The book is highly recommended to postgraduate students and researchers who are interested in various aspects of bioenergetic cycles.

Assembly of the Photosystem II Membrane-Protein Complex of Oxygenic Photosynthesis

Assembly of the Photosystem II Membrane-Protein Complex of Oxygenic Photosynthesis
Author: Julian J. Eaton-Rye
Publisher: Frontiers Media SA
Total Pages: 317
Release: 2017-08-08
Genre:
ISBN: 2889452336

Photosystem II is a 700-kDa membrane-protein super-complex responsible for the light-driven splitting of water in oxygenic photosynthesis. The photosystem is comprised of two 350-kDa complexes each made of 20 different polypeptides and over 80 co-factors. While there have been major advances in understanding the mature structure of this photosystem many key protein factors involved in the assembly of the complex do not appear in the holoenzyme. The mechanism for assembling this super-complex is a very active area of research with newly discovered assembly factors and subcomplexes requiring characterization. Additionally the ability to split water is inseparable from light-induced photodamage that arises from radicals and reactive O2 species generated by Photosystem II chemistry. Consequently, to sustain water splitting, a “self repair” cycle has evolved whereby damaged protein is removed and replaced so as to extend the working life of the complex. Understanding how the biogenesis and repair processes are coordinated is among several important questions that remain to be answered. Other questions include: how and when are the inorganic cofactors inserted during the assembly and repair processes and how are the subcomplexes protected from photodamage during assembly? Evidence has also been obtained for Photosystem II biogenesis centers in cyanobacteria but do these also exist in plants? Do the molecular mechanisms associated with Photosystem II assembly shed fresh light on the assembly of other major energy-transducing complexes such as Photosystem I or the cytochrome b6/f complex or indeed other respiratory complexes? The contributions to this Frontiers in Plant Science Research Topic are likely to reveal new details applicable to the assembly of a range of membrane-protein complexes, including aspects of self-assembly and solar energy conversion that may be applied to artificial photosynthetic systems. In addition, a deeper understanding of Photosystem II assembly — particularly in response to changing environmental conditions — will provide new knowledge underpinning photosynthetic yields which may contribute to improved food production and long-term food security.