Photonics Explained Simply

Photonics Explained Simply
Author: Patrick Steglich
Publisher: Springer Nature
Total Pages: 50
Release: 2021-06-16
Genre: Science
ISBN: 3658326514

We are at the crossroads of a new epoch: the age of electronics is being replaced by the age of photonics. This book will introduce you to the fascinating development of photonics, avoiding complicated technical terminology and instead explaining the physical fundamentals in a clear way. Based on this, important developments such as the laser and its applications in industry, research and everyday life are described. Complicated physical properties and technical details are explained to the reader in an understandable way. The authors: Dr. Patrick Steglich is lecturer for photonics and optical technologies at the Technical University of Applied Sciences Wildau and scientist at the Leibniz Institute for Innovative Microelectronics IHP in Frankfurt (Oder). Katja Heise works as an editor in Berlin. As a trained political scientist and journalist, she specializes in translating complex technical topics into simple language. The authors live together with their son and two daughters in Berlin. This Springer essential is a translation of the original German 1st edition essentials, Photonik einfach erklärt by Steglich Patrick and Katja Heise, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2019.The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.

Introducing Photonics

Introducing Photonics
Author: Brian Culshaw
Publisher: Cambridge University Press
Total Pages: 177
Release: 2020-07-30
Genre: Science
ISBN: 1107155738

A concise, accessible guide explaining the essential ideas underlying photonics and how they relate to photonic devices and systems.

Neuromorphic Photonics

Neuromorphic Photonics
Author: Paul R. Prucnal
Publisher: CRC Press
Total Pages: 412
Release: 2017-05-08
Genre: Science
ISBN: 1498725244

This book sets out to build bridges between the domains of photonic device physics and neural networks, providing a comprehensive overview of the emerging field of "neuromorphic photonics." It includes a thorough discussion of evolution of neuromorphic photonics from the advent of fiber-optic neurons to today’s state-of-the-art integrated laser neurons, which are a current focus of international research. Neuromorphic Photonics explores candidate interconnection architectures and devices for integrated neuromorphic networks, along with key functionality such as learning. It is written at a level accessible to graduate students, while also intending to serve as a comprehensive reference for experts in the field.

Silicon Photonics Design

Silicon Photonics Design
Author: Lukas Chrostowski
Publisher: Cambridge University Press
Total Pages: 439
Release: 2015-03-12
Genre: Science
ISBN: 1107085454

This hands-on introduction to silicon photonics engineering equips students with everything they need to begin creating foundry-ready designs.

Optical Communications Rules of Thumb

Optical Communications Rules of Thumb
Author: John Lester Miller
Publisher: McGraw Hill Professional
Total Pages: 450
Release: 2002-12-11
Genre: Technology & Engineering
ISBN: 0071500901

This engineering tool provides over 200 time and cost saving rules of thumb--short cuts, tricks, and methods that optical communications veterans have developed through long years of trial and error. * DWDM (Dense Wavelength Division Multiplexing) and SONET (Synchronous Optical NETwork) rules * Information Transmission, fiber optics, and systems rules

Photonic Crystals

Photonic Crystals
Author: John D. Joannopoulos
Publisher: Princeton University Press
Total Pages: 305
Release: 2011-10-30
Genre: Science
ISBN: 1400828244

Since it was first published in 1995, Photonic Crystals has remained the definitive text for both undergraduates and researchers on photonic band-gap materials and their use in controlling the propagation of light. This newly expanded and revised edition covers the latest developments in the field, providing the most up-to-date, concise, and comprehensive book available on these novel materials and their applications. Starting from Maxwell's equations and Fourier analysis, the authors develop the theoretical tools of photonics using principles of linear algebra and symmetry, emphasizing analogies with traditional solid-state physics and quantum theory. They then investigate the unique phenomena that take place within photonic crystals at defect sites and surfaces, from one to three dimensions. This new edition includes entirely new chapters describing important hybrid structures that use band gaps or periodicity only in some directions: periodic waveguides, photonic-crystal slabs, and photonic-crystal fibers. The authors demonstrate how the capabilities of photonic crystals to localize light can be put to work in devices such as filters and splitters. A new appendix provides an overview of computational methods for electromagnetism. Existing chapters have been considerably updated and expanded to include many new three-dimensional photonic crystals, an extensive tutorial on device design using temporal coupled-mode theory, discussions of diffraction and refraction at crystal interfaces, and more. Richly illustrated and accessibly written, Photonic Crystals is an indispensable resource for students and researchers. Extensively revised and expanded Features improved graphics throughout Includes new chapters on photonic-crystal fibers and combined index-and band-gap-guiding Provides an introduction to coupled-mode theory as a powerful tool for device design Covers many new topics, including omnidirectional reflection, anomalous refraction and diffraction, computational photonics, and much more.

Mathematical Modeling in Optical Science

Mathematical Modeling in Optical Science
Author: Gang Bao
Publisher: SIAM
Total Pages: 349
Release: 2001-01-01
Genre: Science
ISBN: 9780898717594

This volume addresses recent developments in mathematical modeling in three areas of optical science: diffractive optics, photonic band gap structures, and waveguides. Particular emphasis is on the formulation of mathematical models and the design and analysis of new computational approaches. The book contains cutting-edge discourses on emerging technology in optics that provides significant challenges and opportunities for applied mathematicians, researchers, and engineers.

Principles of Photonics

Principles of Photonics
Author: Jia-Ming Liu
Publisher: Cambridge University Press
Total Pages: 447
Release: 2016-08-19
Genre: Technology & Engineering
ISBN: 1316692485

With this self-contained and comprehensive text, students will gain a detailed understanding of the fundamental concepts and major principles of photonics. Assuming only a basic background in optics, readers are guided through key topics such as the nature of optical fields, the properties of optical materials, and the principles of major photonic functions regarding the generation, propagation, coupling, interference, amplification, modulation, and detection of optical waves or signals. Numerous examples and problems are provided throughout to enhance understanding, and a solutions manual containing detailed solutions and explanations is available online for instructors. This is the ideal resource for electrical engineering and physics undergraduates taking introductory, single-semester or single-quarter courses in photonics, providing them with the knowledge and skills needed to progress to more advanced courses on photonic devices, systems and applications.

Mathematical and Computational Methods in Photonics and Phononics

Mathematical and Computational Methods in Photonics and Phononics
Author: Habib Ammari
Publisher: American Mathematical Soc.
Total Pages: 522
Release: 2018-10-15
Genre: Mathematics
ISBN: 1470448009

The fields of photonics and phononics encompass the fundamental science of light and sound propagation and interactions in complex structures, as well as its technological applications. This book reviews new and fundamental mathematical tools, computational approaches, and inversion and optimal design methods to address challenging problems in photonics and phononics. An emphasis is placed on analyzing sub-wavelength resonators, super-focusing and super-resolution of electromagnetic and acoustic waves, photonic and phononic crystals, electromagnetic cloaking, and electromagnetic and elastic metamaterials and metasurfaces. Throughout this book, the authors demonstrate the power of layer potential techniques for solving challenging problems in photonics and phononics when they are combined with asymptotic analysis. This book might be of interest to researchers and graduate students working in the fields of applied and computational mathematics, partial differential equations, electromagnetic theory, elasticity, integral equations, and inverse and optimal design problems in photonics and phononics.

Photonics and Lasers

Photonics and Lasers
Author: Richard S. Quimby
Publisher: John Wiley & Sons
Total Pages: 533
Release: 2006-04-14
Genre: Technology & Engineering
ISBN: 047179158X

An introduction to photonics and lasers that does not rely on complex mathematics This book evolved from a series of courses developed by the author and taught in the areas of lasers and photonics. This thoroughly classroom-tested work fills a unique need for students, instructors, and industry professionals in search of an introductory-level book that covers a wide range of topics in these areas. Comparable books tend to be aimed either too high or too low, or they cover only a portion of the topics that are needed for a comprehensive treatment. Photonics and Lasers is divided into four parts: * Propagation of Light * Generation and Detection of Light * Laser Light * Light-Based Communication The author has ensured that complex mathematics does not become an obstacle to understanding key physical concepts. Physical arguments and explanations are clearly set forth while, at the same time, sufficient mathematical detail is provided for a quantitative understanding. As an additional aid to readers who are learning to think symbolically, some equations are expressed in words as well as symbols. Problem sets are provided throughout the book for readers to test their knowledge and grasp of key concepts. A solutions manual is also available for instructors. Finally, the detailed bibliography leads readers to in-depth explorations of particular topics. The book's topics, lasers and photonics, are often treated separately in other texts; however, the author skillfully demonstrates their natural synergy. Because of the combined coverage, this text can be used for a two-semester course or a one-semester course emphasizing either lasers or photonics. This is a perfect introductory textbook for both undergraduate and graduate students, additionally serving as a practical reference for engineers in telecommunications, optics, and laser electronics.