Phenomena and Parameters Important to Burnup Credit

Phenomena and Parameters Important to Burnup Credit
Author:
Publisher:
Total Pages: 16
Release: 2001
Genre:
ISBN:

Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and parameters important to implementation of burnup credit in out-of-reactor applications involving pressurized-water-reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR) spent fuel have been more limited. This paper reviews the knowledge and experience gained from work performed in the US and other countries in the study of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation for transport and dry cask storage is given.

Thermal and Reliability Criteria for Nuclear Fuel Safety

Thermal and Reliability Criteria for Nuclear Fuel Safety
Author: Maksym Maksymov
Publisher: CRC Press
Total Pages: 287
Release: 2022-09-01
Genre: Science
ISBN: 1000793184

The book covers basic approaches to the nuclear fuel state of energy reactors in the last stages of the nuclear fuel cycle, these have been developed by the authors based on Ukrainian Nuclear Power Plant (NPP) operational experience. The book starts by looking at the physical safety basis of water-water energetic reactor (WWER) nuclear fuel. It goes on to discuss modern approaches to the heat exchange modelling in nuclear power plant equipment. Next, the safety criteria when making a decision about dry storage for WWER-1000 fuel assembly are discussed. Then the effect of reactor capacity cyclic changes on energy accumulation of creep formations in fuel cladding is covered in full, along with a chapter on the analysis of WWER-1000 fuel cladding failure. Finally, the book finishes with a description of thermal safety criteria for dry storage of spent nuclear fuel. The book is essential reading for anyone concerned with NPP maintenance and safety.

Technical Data to Justify Full Burnup Credit in Criticality Safety Licensing Analysis

Technical Data to Justify Full Burnup Credit in Criticality Safety Licensing Analysis
Author:
Publisher:
Total Pages:
Release: 2011
Genre:
ISBN:

Enercon Services, Inc. (ENERCON) was requested under Task Order No. 2 to identify scientific and technical data needed to benchmark and justify Full Burnup Credit, which adds 16 fission products and 4 minor actinides1 to Actinide-Only burnup credit. The historical perspective for Full Burnup Credit is discussed, and interviews of organizations participating in burnup credit activities are summarized as a basis for identifying additional data needs and making recommendation. Input from burnup credit participants representing two segments of the commercial nuclear industry is provided. First, the Electric Power Research Institute (EPRI) has been very active in the development of Full Burnup Credit, representing the interests of nuclear utilities in achieving capacity gains for storage and transport casks. EPRI and its utility customers are interested in a swift resolution of the validation issues that are delaying the implementation of Full Burnup Credit [EPRI 2010b]. Second, used nuclear fuel storage and transportation Cask Vendors favor improving burnup credit beyond Actinide-Only burnup credit, although their discussion of specific burnup credit achievements and data needs was limited citing business sensitive and technical proprietary concerns. While Cask Vendor proprietary items are not specifically identified in this report, the needs of all nuclear industry participants are reflected in the conclusions and recommendations of this report. In addition, Oak Ridge National Laboratory (ORNL) and Sandia National Laboratory (SNL) were interviewed for their input into additional data needs to achieve Full Burnup Credit. ORNL was very open to discussions of Full Burnup Credit, with several telecoms and a visit by ENERCON to ORNL. For many years, ORNL has provided extensive support to the NRC regarding burnup credit in all of its forms. Discussions with ORNL focused on potential resolutions to the validation issues for the use of fission products. SNL was helpful in ENERCON's understanding of the difficult issues related to obtaining and analyzing additional cross section test data to support Full Burnup Credit. A PIRT (Phenomena Identification and Ranking Table) analysis was performed by ENERCON to evaluate the costs and benefits of acquiring different types of nuclear data in support of Full Burnup Credit. A PIRT exercise is a formal expert elicitation process with the final output being the ranking tables. The PIRT analysis (Table 7-4: Results of PIRT Evaluation) showed that the acquisition of additional Actinide-Only experimental data, although beneficial, was associated with high cost and is not necessarily needed. The conclusion was that the existing Radiochemical Assay (RCA) data plus the French Haut Taux de Combustion (HTC)2 and handbook Laboratory Critical Experiment (LCE) data provide adequate benchmark validation for Actinide-Only Burnup Credit. The PIRT analysis indicated that the costs and schedule to obtain sufficient additional experimental data to support the addition of 16 fission products to Actinide-Only Burnup Credit to produce Full Burnup Credit are quite substantial. ENERCON estimates the cost to be $50M to $100M with a schedule of five or more years. The PIRT analysis highlights another option for fission product burnup credit, which is the application of computer-based uncertainty analyses (S/U - Sensitivity/Uncertainty methodologies), confirmed by the limited experimental data that is already available. S/U analyses essentially transform cross section uncertainty information contained in the cross section libraries into a reactivity bias and uncertainty. Recent work by ORNL and EPRI has shown that a methodology to support Full Burnup Credit is possible using a combination of traditional RCA and LCE validation plus S/U validation for fission product isotopics and cross sections. Further, the most recent cross section data (ENDF/B-VII) can be incorporated into the burnup credit codes at a reasonable cost compared to the acquisition of equivalent experimental data. ENERCON concludes that even with the costs of code data library updating, the use of S/U analysis methodologies could be accomplished on a shorter schedule and a lower cost than the gathering of sufficient experimental data. ENERCON estimates of the costs of an updated S/U computer code and data suite are $5M to $10M with a schedule of two to three years. Recent ORNL analyses using the S/U analysis method show that the bias and uncertainty values for fission product cross sections are smaller than previously expected. This result is confirmed by a similar EPRI approach using different data and computer codes. ENERCON also found that some issues regarding the implementation of burnup credit appear to have been successfully resolved especially the axial burnup profile issue and the depletion parameter issue. These issues were resolved through data gathering activities at the Yucca Mountain Project and ORNL.

Practices and Developments in Spent Fuel Burnup Credit Applications

Practices and Developments in Spent Fuel Burnup Credit Applications
Author:
Publisher:
Total Pages: 464
Release: 2003
Genre: Business & Economics
ISBN:

Documents the proceedings of the IAEA's third major BUC meeting in Madrid in April 2002 on requirements, practices and developments in BUC applications. Fifty-four participants from 18 countries addressed validation of codes and methods, key issues, safety assessment and implementation, and future applications.

NUREG/CR.

NUREG/CR.
Author: U.S. Nuclear Regulatory Commission
Publisher:
Total Pages: 48
Release: 1977
Genre: Nuclear energy
ISBN:

Modelling of Fuel Behaviour in Design Basis Accidents and Design Extension Conditions

Modelling of Fuel Behaviour in Design Basis Accidents and Design Extension Conditions
Author: International Atomic Energy Agency
Publisher:
Total Pages: 218
Release: 2020-07-30
Genre:
ISBN: 9789201080202

This publication is the result of an IAEA technical meeting and reports on Member States' capabilities in modelling, predicting and improving their understanding of the behaviour of nuclear fuel under accident conditions. The main results and outcomes of a coordinated research project (CRP) on this topic are also presented.