Periodic Homogenization Of Elliptic Systems
Download Periodic Homogenization Of Elliptic Systems full books in PDF, epub, and Kindle. Read online free Periodic Homogenization Of Elliptic Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Zhongwei Shen |
Publisher | : Springer |
Total Pages | : 295 |
Release | : 2018-09-04 |
Genre | : Mathematics |
ISBN | : 3319912143 |
This monograph surveys the theory of quantitative homogenization for second-order linear elliptic systems in divergence form with rapidly oscillating periodic coefficients in a bounded domain. It begins with a review of the classical qualitative homogenization theory, and addresses the problem of convergence rates of solutions. The main body of the monograph investigates various interior and boundary regularity estimates that are uniform in the small parameter e>0. Additional topics include convergence rates for Dirichlet eigenvalues and asymptotic expansions of fundamental solutions, Green functions, and Neumann functions. The monograph is intended for advanced graduate students and researchers in the general areas of analysis and partial differential equations. It provides the reader with a clear and concise exposition of an important and currently active area of quantitative homogenization.
Author | : Carlos E. Kenig |
Publisher | : American Mathematical Soc. |
Total Pages | : 345 |
Release | : 2020-12-14 |
Genre | : Education |
ISBN | : 1470461277 |
The origins of the harmonic analysis go back to an ingenious idea of Fourier that any reasonable function can be represented as an infinite linear combination of sines and cosines. Today's harmonic analysis incorporates the elements of geometric measure theory, number theory, probability, and has countless applications from data analysis to image recognition and from the study of sound and vibrations to the cutting edge of contemporary physics. The present volume is based on lectures presented at the summer school on Harmonic Analysis. These notes give fresh, concise, and high-level introductions to recent developments in the field, often with new arguments not found elsewhere. The volume will be of use both to graduate students seeking to enter the field and to senior researchers wishing to keep up with current developments.
Author | : Michel Chipot |
Publisher | : Springer Science & Business Media |
Total Pages | : 289 |
Release | : 2009-02-19 |
Genre | : Mathematics |
ISBN | : 3764399813 |
The aim of this book is to introduce the reader to different topics of the theory of elliptic partial differential equations by avoiding technicalities and refinements. Apart from the basic theory of equations in divergence form it includes subjects such as singular perturbation problems, homogenization, computations, asymptotic behaviour of problems in cylinders, elliptic systems, nonlinear problems, regularity theory, Navier-Stokes system, p-Laplace equation. Just a minimum on Sobolev spaces has been introduced, and work or integration on the boundary has been carefully avoided to keep the reader's attention on the beauty and variety of these issues. The chapters are relatively independent of each other and can be read or taught separately. Numerous results presented here are original and have not been published elsewhere. The book will be of interest to graduate students and faculty members specializing in partial differential equations.
Author | : V.V. Jikov |
Publisher | : Springer Science & Business Media |
Total Pages | : 583 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3642846599 |
It was mainly during the last two decades that the theory of homogenization or averaging of partial differential equations took shape as a distinct mathe matical discipline. This theory has a lot of important applications in mechanics of composite and perforated materials, filtration, disperse media, and in many other branches of physics, mechanics and modern technology. There is a vast literature on the subject. The term averaging has been usually associated with the methods of non linear mechanics and ordinary differential equations developed in the works of Poincare, Van Der Pol, Krylov, Bogoliubov, etc. For a long time, after the works of Maxwell and Rayleigh, homogeniza tion problems for· partial differential equations were being mostly considered by specialists in physics and mechanics, and were staying beyond the scope of mathematicians. A great deal of attention was given to the so called disperse media, which, in the simplest case, are two-phase media formed by the main homogeneous material containing small foreign particles (grains, inclusions). Such two-phase bodies, whose size is considerably larger than that of each sep arate inclusion, have been discovered to possess stable physical properties (such as heat transfer, electric conductivity, etc.) which differ from those of the con stituent phases. For this reason, the word homogenized, or effective, is used in relation to these characteristics. An enormous number of results, approximation formulas, and estimates have been obtained in connection with such problems as electromagnetic wave scattering on small particles, effective heat transfer in two-phase media, etc.
Author | : Doïna Cioranescu |
Publisher | : Oxford University Press on Demand |
Total Pages | : 262 |
Release | : 1999 |
Genre | : Mathematics |
ISBN | : 9780198565543 |
Composite materials are widely used in industry: well-known examples of this are the superconducting multi-filamentary composites which are used in the composition of optical fibres. Such materials are complicated to model, as different points in the material will have different properties. The mathematical theory of homogenization is designed to deal with this problem, and hence is used to model the behaviour of these important materials. This book provides a self-contained and authoritative introduction to the subject for graduates and researchers in the field.
Author | : Doina Cioranescu |
Publisher | : Springer |
Total Pages | : 508 |
Release | : 2018-11-03 |
Genre | : Mathematics |
ISBN | : 9811330328 |
This is the first book on the subject of the periodic unfolding method (originally called "éclatement périodique" in French), which was originally developed to clarify and simplify many questions arising in the homogenization of PDE's. It has since led to the solution of some open problems. Written by the three mathematicians who developed the method, the book presents both the theory as well as numerous examples of applications for partial differential problems with rapidly oscillating coefficients: in fixed domains (Part I), in periodically perforated domains (Part II), and in domains with small holes generating a strange term (Part IV). The method applies to the case of multiple microscopic scales (with finitely many distinct scales) which is connected to partial unfolding (also useful for evolution problems). This is discussed in the framework of oscillating boundaries (Part III). A detailed example of its application to linear elasticity is presented in the case of thin elastic plates (Part V). Lastly, a complete determination of correctors for the model problem in Part I is obtained (Part VI). This book can be used as a graduate textbook to introduce the theory of homogenization of partial differential problems, and is also a must for researchers interested in this field.
Author | : Alain Bensoussan |
Publisher | : American Mathematical Soc. |
Total Pages | : 410 |
Release | : 2011-10-26 |
Genre | : Mathematics |
ISBN | : 0821853244 |
This is a reprinting of a book originally published in 1978. At that time it was the first book on the subject of homogenization, which is the asymptotic analysis of partial differential equations with rapidly oscillating coefficients, and as such it sets the stage for what problems to consider and what methods to use, including probabilistic methods. At the time the book was written the use of asymptotic expansions with multiple scales was new, especially their use as a theoretical tool, combined with energy methods and the construction of test functions for analysis with weak convergence methods. Before this book, multiple scale methods were primarily used for non-linear oscillation problems in the applied mathematics community, not for analyzing spatial oscillations as in homogenization. In the current printing a number of minor corrections have been made, and the bibliography was significantly expanded to include some of the most important recent references. This book gives systematic introduction of multiple scale methods for partial differential equations, including their original use for rigorous mathematical analysis in elliptic, parabolic, and hyperbolic problems, and with the use of probabilistic methods when appropriate. The book continues to be interesting and useful to readers of different backgrounds, both from pure and applied mathematics, because of its informal style of introducing the multiple scale methodology and the detailed proofs.
Author | : Scott Armstrong |
Publisher | : Springer |
Total Pages | : 548 |
Release | : 2019-05-09 |
Genre | : Mathematics |
ISBN | : 3030155455 |
The focus of this book is the large-scale statistical behavior of solutions of divergence-form elliptic equations with random coefficients, which is closely related to the long-time asymptotics of reversible diffusions in random media and other basic models of statistical physics. Of particular interest is the quantification of the rate at which solutions converge to those of the limiting, homogenized equation in the regime of large scale separation, and the description of their fluctuations around this limit. This self-contained presentation gives a complete account of the essential ideas and fundamental results of this new theory of quantitative stochastic homogenization, including the latest research on the topic, and is supplemented with many new results. The book serves as an introduction to the subject for advanced graduate students and researchers working in partial differential equations, statistical physics, probability and related fields, as well as a comprehensive reference for experts in homogenization. Being the first text concerned primarily with stochastic (as opposed to periodic) homogenization and which focuses on quantitative results, its perspective and approach are entirely different from other books in the literature.
Author | : Xavier Blanc |
Publisher | : Springer Nature |
Total Pages | : 469 |
Release | : 2023-04-29 |
Genre | : Mathematics |
ISBN | : 3031218337 |
The book provides a pedagogic and comprehensive introduction to homogenization theory with a special focus on problems set for non-periodic media. The presentation encompasses both deterministic and probabilistic settings. It also mixes the most abstract aspects with some more practical aspects regarding the numerical approaches necessary to simulate such multiscale problems. Based on lecture courses of the authors, the book is suitable for graduate students of mathematics and engineering.
Author | : Marko Kostić |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 606 |
Release | : 2021-11-22 |
Genre | : Mathematics |
ISBN | : 3110763605 |
Covers uniformly recurrent solutions and c-almost periodic solutions of abstract Volterra integro-differential equations as well as various generalizations of almost periodic functions in Lebesgue spaces with variable coefficients. Treats multi-dimensional almost periodic type functions and their generalizations in adequate detail.