Pd Catalysed C-C & C-O Bond Formation Using Bis-(dialkyl/diarylphosphino)ferrocene Ligands

Pd Catalysed C-C & C-O Bond Formation Using Bis-(dialkyl/diarylphosphino)ferrocene Ligands
Author: Edward J. Milton
Publisher:
Total Pages:
Release: 2010
Genre:
ISBN:

A brief introduction explaining phosphine ligand properties, Pd catalysed cross-coupling reactions; the importance of the steps involved in the catalytic cycle (oxidative addition, transmetalation & reductive elimination), mechanistic studies and a comparison of various reactions will give an overview of important cross-coupling reactions and their limitations. The development of a "super-concentrated" (5M) Pd catalysed Kumada type coupling reaction has been developed for coupling a range of aryl bromide and chloride substrates with the Grignard reagents ((p-CF3-C6H4)MgBr)) and PhMgBr in methyl-tetrahydrofuran (Me-THF). Using a range of bidentate ligands such as bis-phosphinoferrocenyl ligands, good conversions were achieved using small amounts of solvent; up to 10 times less than typical procedures in THF. The unsymmetrical Pt complexes of the form [Pt(P-P)Br2], [Pt(P-P)(Ph)Br] and [Pt(P-P)Ph2] have been synthesised and characterised. The variations of substituents on the ligand system and the steric bulk have been shown to have a dramatic effect on the rate of transmetalation. The results provide one explanation why 1,1'-bis(di tert-butylphosphino)ferrocene (dtbpf), an excellent ligand for certain Suzuki reactions, is quite poor in reactions where transmetalation is more difficult. Palladium dichloride complexes of the ferrocenylphosphine based ligands 1,1'-bis- (diphenylphosphino)ferrocene (dppf), 1,1'-bis-(diisopropylphosphino)ferrocene (dippf) and 1,1'-bis-(di-tert-butylphosphino)ferrocene (dtbpf) have been shown to be active in the Hiyama cross-coupling of p-bromoacetophenone and vinyltrimethoxysilane (CHCH2Si(OMe3)) in the presence of TBAF under thermal heating and microwave conditions. Ligands with the optimum balance for promoting the transmetalation, oxidative addition and reductive elimination steps along the reaction pathway have been identified. Competition experiments are consistent with slow transmetalation being an issue with the Hiyama reaction relative to the Suzuki coupling. A novel protocol has been developed for the synthesis of aryl-alkyl ethers via C-O bond activation under Pd catalysed conditions. Utilising the unsymmetrical 1-bis-(ditertbutyl-1'- bis-diphenylphosphino)ferrocene (dtbdppf) under optimised conditions with silicon based nucleophiles and NaOH or TBAF as an activator, the formation of methyl, ethyl, n-propyl and n-butyl ethers with a range of aryl halides was achieved in good yield.

Pd Catalysed C-C & C-O Bond Formation Using Bis-(dialkyl

Pd Catalysed C-C & C-O Bond Formation Using Bis-(dialkyl
Author: Edward J. Milton
Publisher:
Total Pages:
Release: 2010
Genre:
ISBN:

A brief introduction explaining phosphine ligand properties, Pd catalysed cross-coupling reactions; the importance of the steps involved in the catalytic cycle (oxidative addition, transmetalation & reductive elimination), mechanistic studies and a comparison of various reactions will give an overview of important cross-coupling reactions and their limitations. The development of a "super-concentrated" (5M) Pd catalysed Kumada type coupling reaction has been developed for coupling a range of aryl bromide and chloride substrates with the Grignard reagents ((p-CF3-C6H4)MgBr)) and PhMgBr in methyl-tetrahydrofuran (Me-THF). Using a range of bidentate ligands such as bis-phosphinoferrocenyl ligands, good conversions were achieved using small amounts of solvent; up to 10 times less than typical procedures in THF. The unsymmetrical Pt complexes of the form [Pt(P-P)Br2], [Pt(P-P)(Ph)Br] and [Pt(P-P)Ph2] have been synthesised and characterised. The variations of substituents on the ligand system and the steric bulk have been shown to have a dramatic effect on the rate of transmetalation. The results provide one explanation why 1,1'-bis(di tert-butylphosphino)ferrocene (dtbpf), an excellent ligand for certain Suzuki reactions, is quite poor in reactions where transmetalation is more difficult. Palladium dichloride complexes of the ferrocenylphosphine based ligands 1,1'-bis- (diphenylphosphino)ferrocene (dppf), 1,1'-bis-(diisopropylphosphino)ferrocene (dippf) and 1,1'-bis-(di-tert-butylphosphino)ferrocene (dtbpf) have been shown to be active in the Hiyama cross-coupling of p-bromoacetophenone and vinyltrimethoxysilane (CHCH2Si(OMe3)) in the presence of TBAF under thermal heating and microwave conditions. Ligands with the optimum balance for promoting the transmetalation, oxidative addition and reductive elimination steps along the reaction pathway have been identified. Competition experiments are consistent with slow transmetalation being an issue with the Hiyama reaction relative to the Suzuki coupling. A novel protocol has been developed for the synthesis of aryl-alkyl ethers via C-O bond activation under Pd catalysed conditions. Utilising the unsymmetrical 1-bis-(ditertbutyl-1'- bis-diphenylphosphino)ferrocene (dtbdppf) under optimised conditions with silicon based nucleophiles and NaOH or TBAF as an activator, the formation of methyl, ethyl, n-propyl and n-butyl ethers with a range of aryl halides was achieved in good yield.

Palladium-catalyzed Carbon-carbon, Carbon-nitrogen and Carbon-oxygen Bond Formation

Palladium-catalyzed Carbon-carbon, Carbon-nitrogen and Carbon-oxygen Bond Formation
Author: Xiaohua Huang
Publisher:
Total Pages: 432
Release: 2003
Genre:
ISBN:

New methods for Pd-catalyzed cross-coupling reactions of aryl halides or arenesulfonates are described. Key to the success of these transformations is the proper choice of ligand and reaction conditions. Palladium catalysts supported by bulky, monodentate phosphine ligands with a biaryl backbone or the bidentate ligand, Xantphos, effectively promote the formation of ca-aryl carbonyl compounds. Base-sensitive functional groups are better tolerated when a weak base, such as K3PO4, is used. One of the most difficult transformations in Pd catalysis, the intermolecular C-O bond formation between primary alcohols and electron-neutral or even electron-rich aryl halides, was effectively promoted by the use of a new generation of ligands, 3-methyl-2-di-t-butylphosphinobiaryl. The one-step synthesis of ligands from cheap starting materials, as well as the mild reaction conditions employed for the coupling reactions, enables the practical use of Pd catalysis to access aryl alkyl ethers for the first time. Continuing study of Pd-catalyzed C-N bond-forming processes using biaryl monophosphine ligands led to the discovery of a structural derivative of these ligands, 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl. This ligand, in combination with a Pd source, produces a catalyst system with both a greater degree of activity and of stability than those that use our previous ligands. Substrates that were not amenable to Pd catalysis previously are reexamined using this new catalyst system, and excellent results are obtained.

Design of Precatalysts and Phosphine Ligands for Pd-catalyzed Transformations

Design of Precatalysts and Phosphine Ligands for Pd-catalyzed Transformations
Author: Bryan Taylor Ingoglia
Publisher:
Total Pages: 373
Release: 2019
Genre:
ISBN:

The work described in this thesis pertains to the formation of carbon-heteroatom bonds facilitated by palladium catalysts supported by bulky phosphine ligands. The first chapter is a summary of how biaryl monophosphine ligands have been used for carbon-heteroatom bond formations, including a ligand selection guide. The second chapter demonstrates how phosphinesupported Pd(II) oxidative addition complexes can be used as precatalysts in a variety of cross-coupling reactions. The third chapter presents a systematic study of the ligand architecture in an effort to rationally design new ligands capable of facilitating the challenging C-F reductive elimination from Pd(II). The fourth chapter highlights a structurally interesting side-product that resulted during ligand synthesis. Chapter 1: Biaryl Monophosphine Ligands in Palladium-Catalyzed C-N Coupling: An Updated User's Guide Over the past three decades, Pd-catalyzed cross-coupling reactions have become a mainstay of organic synthesis. In particular, catalysts derived from biaryl monophosphines have shown wide utility in forming C-N bonds under mild reaction conditions. This work summarizes a variety of C-N cross-coupling reactions using biaryl monophosphines as supporting ligands, with the goal of directing synthetic chemists toward the ligands and conditions best suited for a particular coupling. Chapter 2. Oxidative Addition Complexes as Precatalysts for Cross-Coupling Reactions Requiring Extremely Bulky Biarylphosphine Ligands. Palladium-based oxidative addition complexes were found to be effective precatalysts for C-N, C-O, and C-F cross-coupling reactions with a variety of aromatic electrophiles. These Pd(II) complexes are easily prepared and offer a convenient alternative to previously developed classes of precatalysts as they can be formed even with extremely large phosphine ligands, for which palladacycle-based precatalysts do not readily form. The complexes were found to be stable to long-term storage under ambient conditions. Chapter 3. Structure-Activity Relationship of Phosphine Ligands for the Fluorination of Five-membered Heteroaromatic Compounds Palladium catalysts supported by bulky dialkyl triaryl monophosphine ligands have been shown to promote the coupling of metal fluorides with (hetero)aryl bromides and triflates in good yield. A limitation of this methodology is the use of five-membered heteroaryl bromides, as the reductive elimination is more challenging due to the smaller size and electron-rich nature of the aryl electrophiles. In order to understand which structural features of the ancillary ligand are critical to facilitating the desired transformation, the ligand backbone was systematically varied and the initial rate of fluorination was monitored. These studies revealed that substitution at the 2" and 6" positions of the ligand scaffold has a dramatic impact on the reaction rate. As a result of these studies, new ligands were proposed which may be better able to accelerate the fluorination reaction. Chapter 4: Discovery of a Sterically Encumbered Hexasubstituted Arene through the Pdmediated Dearomative Rearrangement of Biaryl Monophosphine Ligands A key feature of the Pd-catalyzed aromatic fluorination reaction is the presence of the aryl group at the 3' position of the ligand backbone. It has been shown that supporting ligands lacking substitution at this position can be modified through a dearomative rearrangement, which incorporates one catalytic equivalent of the aryl electrophile into the ligand backbone when very bulky biarylphosphines are used. In Chapter 3, it was demonstrated that this rearrangement reaction is useful for rapidly accessing a variety of dialkyl triaryl monophosphine derivatives. During these studies, it was noted that for electron-rich aryl groups, this arylation occurred twice to form an unusual sterically congested hexasubstituted arene. X-ray crystallographic data indicates that the fully substituted aromatic ring is not planar.

Tailor-Made Polymers

Tailor-Made Polymers
Author: John R. Severn
Publisher: John Wiley & Sons
Total Pages: 374
Release: 2008-06-25
Genre: Technology & Engineering
ISBN: 3527621679

This first comprehensive handbook on this exciting field provides readers with a clear understanding of the current state of the art, ingenious solutions and opportunities. Researchers from academia and industry present such emerging topics as multi-component systems and computational chemistry, as well as the latest developments in competing and complementary technologies. The result is a well-balanced and up-to-date overview.

Handbook of Industrial Polyethylene and Technology

Handbook of Industrial Polyethylene and Technology
Author: Mark A. Spalding
Publisher: John Wiley & Sons
Total Pages: 1671
Release: 2017-10-26
Genre: Technology & Engineering
ISBN: 1119159776

This handbook provides an exhaustive description of polyethylene. The 50+ chapters are written by some of the most experienced and prominent authors in the field, providing a truly unique view of polyethylene. The book starts with a historical discussion on how low density polyethylene was discovered and how it provided unique opportunities in the early days. New catalysts are presented and show how they created an expansion in available products including linear low density polyethylene, high density polyethylene, copolymers, and polyethylene produced from metallocene catalysts. With these different catalysts systems a wide range of structures are possible with an equally wide range of physical properties. Numerous types of additives are presented that include additives for the protection of the resin from the environment and processing, fillers, processing aids, anti-fogging agents, pigments, and flame retardants. Common processing methods including extrusion, blown film, cast film, injection molding, and thermoforming are presented along with some of the more specialized processing techniques such as rotational molding, fiber processing, pipe extrusion, reactive extrusion, wire and cable, and foaming processes. The business of polyethylene including markets, world capacity, and future prospects are detailed. This handbook provides the most current and complete technology assessments and business practices for polyethylene resins.

Polyolefin Compounds and Materials

Polyolefin Compounds and Materials
Author: Mariam Al-Ali AlMa'adeed
Publisher: Springer
Total Pages: 354
Release: 2015-12-23
Genre: Technology & Engineering
ISBN: 3319259822

This book describes industrial applications of polyolefins from the researchers' perspective. Polyolefins constitute today arguably the most important class of polymers and polymeric materials for widespread industrial applications. This book summarizes the present state of the art. Starting from fundamental aspects, such as the polymerization techniques to synthesize polyolefins, the book introduces the topic. Basic knowledge about polyolefin composites and blends is explained, before applications aspects in different industry sectors are discussed. The spectrum comprises a wide range of applications and industry sectors, such as the packaging and food industry, the textile industry, automotive and buildings, and even biomedical applications. Topics, which are addressed in the various chapters, comprise synthesis and processing of the materials; their classification; mechanical, physical and technical requirements and properties; their characterization; and many more. In the end of the book, even the disposal, degradation and recycling of polyolefins are addressed, and light is shed on their commercial significance and economic value. In this way, the book follows the entire 'lifetime' of polyolefin compounds and materials: from their synthesis and processing, over applications, to the recycling and reuse of disposed or degraded polyolefin substrates.