Path Integrals in Field Theory

Path Integrals in Field Theory
Author: Ulrich Mosel
Publisher: Springer Science & Business Media
Total Pages: 232
Release: 2004
Genre: Mathematics
ISBN: 9783540403821

Concise textbook intended as a primer on path integral formalism both in classical and quantum field theories, although emphasis is on the latter. It is ideally suited as an intensive one-semester course, delivering the basics needed by readers to follow developments in field theory. Path Integrals in Field Theory paves the way for both more rigorous studies in fundamental mathematical issues as well as for applications in hadron, particle and nuclear physics, thus addressing students in mathematical and theoretical physics alike. Assuming some background in relativistic quantum theory (but none in field theory), it complements the authors monograph Fields, Symmetries, and Quarks (Springer, 1999).

Path Integral Methods in Quantum Field Theory

Path Integral Methods in Quantum Field Theory
Author: R. J. Rivers
Publisher: Cambridge University Press
Total Pages: 356
Release: 1988-10-27
Genre: Science
ISBN: 9780521368704

The applications of functional integral methods introduced in this text for solving a range of problems in quantum field theory will prove useful for students and researchers in theoretical physics and quantum field theory.

Path Integrals in Physics

Path Integrals in Physics
Author: M Chaichian
Publisher: CRC Press
Total Pages: 368
Release: 2001-07-01
Genre: Science
ISBN: 9780750308021

The path integral approach has proved extremely useful for the understanding of the most complex problems in quantum field theory, cosmology, and condensed matter physics. Path Integrals in Physics: Volume II, Quantum Field Theory, Statistical Physics and other Modern Applications covers the fundamentals of path integrals, both the Wiener and Feynman types, and their many applications in physics. The book deals with systems that have an infinite number of degrees of freedom. It discusses the general physical background and concepts of the path integral approach used, followed by a detailed presentation of the most typical and important applications as well as problems with either their solutions or hints how to solve them. Each chapter is self-contained and can be considered as an independent textbook. It provides a comprehensive, detailed, and systematic account of the subject suitable for both students and experienced researchers.

Field Theory

Field Theory
Author: Ashok Das
Publisher: World Scientific
Total Pages: 420
Release: 1993
Genre: Science
ISBN: 9789810213978

Traditionally, field theory is taught through canonical quantization with a heavy emphasis on high energy physics. However, the techniques of field theory are applicable as well and are extensively used in various other areas of physics such as consdensed matter, nuclear physics and statistical mechanics. The path integral approach brings out this feature most clearly. In this book, the path integral approach is developed in detail completely within the context of quantum mechanics. Subsequently, it is applied to various areas of physics.

Path Integrals and Quantum Processes

Path Integrals and Quantum Processes
Author: Mark S. Swanson
Publisher: Courier Corporation
Total Pages: 463
Release: 2014-02-19
Genre: Science
ISBN: 0486782301

Graduate-level, systematic presentation of path integral approach to calculating transition elements, partition functions, and source functionals. Covers Grassmann variables, field and gauge field theory, perturbation theory, and nonperturbative results. 1992 edition.

Quantum Field Theory

Quantum Field Theory
Author: Kerson Huang
Publisher: John Wiley & Sons
Total Pages: 446
Release: 2008-09-26
Genre: Science
ISBN: 3527617388

A unique approach to quantum field theory, with emphasis on the principles of renormalization Quantum field theory is frequently approached from the perspective of particle physics. This book adopts a more general point of view and includes applications of condensed matter physics. Written by a highly respected writer and researcher, it first develops traditional concepts, including Feynman graphs, before moving on to key topics such as functional integrals, statistical mechanics, and Wilson's renormalization group. The connection between the latter and conventional perturbative renormalization is explained. Quantum Field Theory is an exceptional textbook for graduate students familiar with advanced quantum mechanics as well as physicists with an interest in theoretical physics. It features: * Coverage of quantum electrodynamics with practical calculations and a discussion of perturbative renormalization * A discussion of the Feynman path integrals and a host of current subjects, including the physical approach to renormalization, spontaneous symmetry breaking and superfluidity, and topological excitations * Nineteen self-contained chapters with exercises, supplemented with graphs and charts

Quantum Field Theory

Quantum Field Theory
Author: Lukong Cornelius Fai
Publisher: CRC Press
Total Pages: 595
Release: 2019-06-20
Genre: Science
ISBN: 0429589417

Choice Recommended Title, February 2020 This book explores quantum field theory using the Feynman functional and diagrammatic techniques as foundations to apply Quantum Field Theory to a broad range of topics in physics. This book will be of interest not only to condensed matter physicists but physicists in a range of disciplines as the techniques explored apply to high-energy as well as soft matter physics. Features: Comprehensive and rigorous, yet presents an easy to understand approach Applicable to a wide range of disciplines Accessible to those with little, or basic, mathematical understanding

Mathematical Theory of Feynman Path Integrals

Mathematical Theory of Feynman Path Integrals
Author: Sergio A. Albeverio
Publisher: Springer
Total Pages: 143
Release: 2006-11-14
Genre: Mathematics
ISBN: 354038250X

Feynman path integrals integrals, suggested heuristically by Feynman in the 40s, have become the basis of much of contemporary physics, from non relativistic quantum mechanics to quantum fields, including gauge fields, gravitation, cosmology. Recently ideas based on Feynman path integrals have also played an important role in areas of mathematics like low dimensional topology and differential geometry, algebraic geometry, infinite dimensional analysis and geometry, and number theory. The 2nd edition of LNM 523 is based on the two first authors' mathematical approach of this theory presented in its 1st edition in 1976. To take care of the many developments which have occurred since then, an entire new chapter about the current forefront of research has been added. Except for this new chapter, the basic material and presentation of the first edition was mantained, a few misprints have been corrected. At the end of each chapter the reader will also find notes with further bibliographical information.

Path Integrals and Quantum Anomalies

Path Integrals and Quantum Anomalies
Author: Kazuo Fujikawa
Publisher: Oxford University Press
Total Pages: 297
Release: 2004-04-29
Genre: Mathematics
ISBN: 0198529139

The Feynman path integrals are becoming increasingly important in the applications of quantum mechanics and field theory. The path integral formulation of quantum anomalies, i.e. the quantum breaking of certain symmetries, can now cover all the known quantum anomalies in a coherent manner. In this book the authors provide an introduction to the path integral method in quantum field theory and its applications to the analyses of quantum anomalies. No previous knowledge of fieldtheory beyond the advanced undergraduate quantum mechanics is assumed. The book provides the first coherent introductory treatment of the path integral formulation of chiral and Weyl anomalies, with applications to gauge theory in two and four dimensions, conformal field theory and string theory. Explicitand elementary path integral calculations of most of the quantum anomalies covered are given. The conceptual basis of the path integral bosonization in two-dimensional theory, which may have applications to condensed matter theory, for example, is clarified. The book also covers the recent interesting developments in the treatment of fermions and chiral anomalies in lattice gauge theory.

Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets

Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets
Author: Hagen Kleinert
Publisher: World Scientific
Total Pages: 1626
Release: 2009
Genre: Business & Economics
ISBN: 9814273570

Topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern-Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect." "The relevance of path integrals to financial markets is discussed, and improvements of the famous Black-Scholes formula for option prices are developed which account for the fact that large market fluctuations occur much more frequently than in Gaussian distributions." --Book Jacket.