Nonlinear Data Assimilation

Nonlinear Data Assimilation
Author: Peter Jan Van Leeuwen
Publisher: Springer
Total Pages: 130
Release: 2015-07-22
Genre: Mathematics
ISBN: 3319183478

This book contains two review articles on nonlinear data assimilation that deal with closely related topics but were written and can be read independently. Both contributions focus on so-called particle filters. The first contribution by Jan van Leeuwen focuses on the potential of proposal densities. It discusses the issues with present-day particle filters and explorers new ideas for proposal densities to solve them, converging to particle filters that work well in systems of any dimension, closing the contribution with a high-dimensional example. The second contribution by Cheng and Reich discusses a unified framework for ensemble-transform particle filters. This allows one to bridge successful ensemble Kalman filters with fully nonlinear particle filters, and allows a proper introduction of localization in particle filters, which has been lacking up to now.

Data Assimilation

Data Assimilation
Author: Geir Evensen
Publisher: Springer Science & Business Media
Total Pages: 285
Release: 2006-12-22
Genre: Science
ISBN: 3540383018

This book reviews popular data-assimilation methods, such as weak and strong constraint variational methods, ensemble filters and smoothers. The author shows how different methods can be derived from a common theoretical basis, as well as how they differ or are related to each other, and which properties characterize them, using several examples. Readers will appreciate the included introductory material and detailed derivations in the text, and a supplemental web site.

Data Assimilation for the Geosciences

Data Assimilation for the Geosciences
Author: Steven J. Fletcher
Publisher: Elsevier
Total Pages: 978
Release: 2017-03-10
Genre: Science
ISBN: 0128044845

Data Assimilation for the Geosciences: From Theory to Application brings together all of the mathematical,statistical, and probability background knowledge needed to formulate data assimilation systems in one place. It includes practical exercises for understanding theoretical formulation and presents some aspects of coding the theory with a toy problem. The book also demonstrates how data assimilation systems are implemented in larger scale fluid dynamical problems related to the atmosphere, oceans, as well as the land surface and other geophysical situations. It offers a comprehensive presentation of the subject, from basic principles to advanced methods, such as Particle Filters and Markov-Chain Monte-Carlo methods. Additionally, Data Assimilation for the Geosciences: From Theory to Application covers the applications of data assimilation techniques in various disciplines of the geosciences, making the book useful to students, teachers, and research scientists. Includes practical exercises, enabling readers to apply concepts in a theoretical formulation Offers explanations for how to code certain parts of the theory Presents a step-by-step guide on how, and why, data assimilation works and can be used

Data Assimilation: Methods, Algorithms, and Applications

Data Assimilation: Methods, Algorithms, and Applications
Author: Mark Asch
Publisher: SIAM
Total Pages: 310
Release: 2016-12-29
Genre: Mathematics
ISBN: 1611974542

Data assimilation is an approach that combines observations and model output, with the objective of improving the latter. This book places data assimilation into the broader context of inverse problems and the theory, methods, and algorithms that are used for their solution. It provides a framework for, and insight into, the inverse problem nature of data assimilation, emphasizing why and not just how. Methods and diagnostics are emphasized, enabling readers to readily apply them to their own field of study. Readers will find a comprehensive guide that is accessible to nonexperts; numerous examples and diverse applications from a broad range of domains, including geophysics and geophysical flows, environmental acoustics, medical imaging, mechanical and biomedical engineering, economics and finance, and traffic control and urban planning; and the latest methods for advanced data assimilation, combining variational and statistical approaches.

Filtering Complex Turbulent Systems

Filtering Complex Turbulent Systems
Author: Andrew J. Majda
Publisher: Cambridge University Press
Total Pages: 368
Release: 2012-02-23
Genre: Mathematics
ISBN: 1107016665

The authors develop a systematic applied mathematics perspective on the problems associated with filtering complex turbulent systems. The book contains background material from filtering, turbulence theory and numerical analysis, making it suitable for graduate courses as well as for researchers in a range of disciplines where applied mathematics is required.

Sequential Monte Carlo Methods in Practice

Sequential Monte Carlo Methods in Practice
Author: Arnaud Doucet
Publisher: Springer Science & Business Media
Total Pages: 590
Release: 2013-03-09
Genre: Mathematics
ISBN: 1475734379

Monte Carlo methods are revolutionizing the on-line analysis of data in many fileds. They have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques.

Probabilistic Forecasting and Bayesian Data Assimilation

Probabilistic Forecasting and Bayesian Data Assimilation
Author: Sebastian Reich
Publisher: Cambridge University Press
Total Pages: 308
Release: 2015-05-14
Genre: Computers
ISBN: 1316299422

In this book the authors describe the principles and methods behind probabilistic forecasting and Bayesian data assimilation. Instead of focusing on particular application areas, the authors adopt a general dynamical systems approach, with a profusion of low-dimensional, discrete-time numerical examples designed to build intuition about the subject. Part I explains the mathematical framework of ensemble-based probabilistic forecasting and uncertainty quantification. Part II is devoted to Bayesian filtering algorithms, from classical data assimilation algorithms such as the Kalman filter, variational techniques, and sequential Monte Carlo methods, through to more recent developments such as the ensemble Kalman filter and ensemble transform filters. The McKean approach to sequential filtering in combination with coupling of measures serves as a unifying mathematical framework throughout Part II. Assuming only some basic familiarity with probability, this book is an ideal introduction for graduate students in applied mathematics, computer science, engineering, geoscience and other emerging application areas.

Data Assimilation

Data Assimilation
Author: Kody Law
Publisher: Springer
Total Pages: 256
Release: 2015-09-05
Genre: Mathematics
ISBN: 3319203258

This book provides a systematic treatment of the mathematical underpinnings of work in data assimilation, covering both theoretical and computational approaches. Specifically the authors develop a unified mathematical framework in which a Bayesian formulation of the problem provides the bedrock for the derivation, development and analysis of algorithms; the many examples used in the text, together with the algorithms which are introduced and discussed, are all illustrated by the MATLAB software detailed in the book and made freely available online. The book is organized into nine chapters: the first contains a brief introduction to the mathematical tools around which the material is organized; the next four are concerned with discrete time dynamical systems and discrete time data; the last four are concerned with continuous time dynamical systems and continuous time data and are organized analogously to the corresponding discrete time chapters. This book is aimed at mathematical researchers interested in a systematic development of this interdisciplinary field, and at researchers from the geosciences, and a variety of other scientific fields, who use tools from data assimilation to combine data with time-dependent models. The numerous examples and illustrations make understanding of the theoretical underpinnings of data assimilation accessible. Furthermore, the examples, exercises and MATLAB software, make the book suitable for students in applied mathematics, either through a lecture course, or through self-study.

Dynamic Data Assimilation

Dynamic Data Assimilation
Author: John M. Lewis
Publisher: Cambridge University Press
Total Pages: 601
Release: 2006-08-03
Genre: Mathematics
ISBN: 0521851556

Publisher description

Data Assimilation Fundamentals

Data Assimilation Fundamentals
Author: Geir Evensen
Publisher: Springer Nature
Total Pages: 251
Release: 2022-04-22
Genre: Science
ISBN: 3030967093

This open-access textbook's significant contribution is the unified derivation of data-assimilation techniques from a common fundamental and optimal starting point, namely Bayes' theorem. Unique for this book is the "top-down" derivation of the assimilation methods. It starts from Bayes theorem and gradually introduces the assumptions and approximations needed to arrive at today's popular data-assimilation methods. This strategy is the opposite of most textbooks and reviews on data assimilation that typically take a bottom-up approach to derive a particular assimilation method. E.g., the derivation of the Kalman Filter from control theory and the derivation of the ensemble Kalman Filter as a low-rank approximation of the standard Kalman Filter. The bottom-up approach derives the assimilation methods from different mathematical principles, making it difficult to compare them. Thus, it is unclear which assumptions are made to derive an assimilation method and sometimes even which problem it aspires to solve. The book's top-down approach allows categorizing data-assimilation methods based on the approximations used. This approach enables the user to choose the most suitable method for a particular problem or application. Have you ever wondered about the difference between the ensemble 4DVar and the "ensemble randomized likelihood" (EnRML) methods? Do you know the differences between the ensemble smoother and the ensemble-Kalman smoother? Would you like to understand how a particle flow is related to a particle filter? In this book, we will provide clear answers to several such questions. The book provides the basis for an advanced course in data assimilation. It focuses on the unified derivation of the methods and illustrates their properties on multiple examples. It is suitable for graduate students, post-docs, scientists, and practitioners working in data assimilation.