Partial Differential Equations In Physics
Download Partial Differential Equations In Physics full books in PDF, epub, and Kindle. Read online free Partial Differential Equations In Physics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : S. L. Sobolev |
Publisher | : Courier Corporation |
Total Pages | : 452 |
Release | : 1964-01-01 |
Genre | : Science |
ISBN | : 9780486659640 |
This volume presents an unusually accessible introduction to equations fundamental to the investigation of waves, heat conduction, hydrodynamics, and other physical problems. Topics include derivation of fundamental equations, Riemann method, equation of heat conduction, theory of integral equations, Green's function, and much more. The only prerequisite is a familiarity with elementary analysis. 1964 edition.
Author | : James Kirkwood |
Publisher | : Academic Press |
Total Pages | : 431 |
Release | : 2012-01-20 |
Genre | : Mathematics |
ISBN | : 0123869110 |
Suitable for advanced undergraduate and beginning graduate students taking a course on mathematical physics, this title presents some of the most important topics and methods of mathematical physics. It contains mathematical derivations and solutions - reinforcing the material through repetition of both the equations and the techniques.
Author | : Arnold Sommerfeld |
Publisher | : |
Total Pages | : 360 |
Release | : 1949 |
Genre | : Differential equations, Partial |
ISBN | : |
Partial Differential Equations in Physics ...
Author | : Isaak Rubinstein |
Publisher | : Cambridge University Press |
Total Pages | : 704 |
Release | : 1998-04-28 |
Genre | : Mathematics |
ISBN | : 9780521558464 |
The unique feature of this book is that it considers the theory of partial differential equations in mathematical physics as the language of continuous processes, that is, as an interdisciplinary science that treats the hierarchy of mathematical phenomena as reflections of their physical counterparts. Special attention is drawn to tracing the development of these mathematical phenomena in different natural sciences, with examples drawn from continuum mechanics, electrodynamics, transport phenomena, thermodynamics, and chemical kinetics. At the same time, the authors trace the interrelation between the different types of problems - elliptic, parabolic, and hyperbolic - as the mathematical counterparts of stationary and evolutionary processes. This combination of mathematical comprehensiveness and natural scientific motivation represents a step forward in the presentation of the classical theory of PDEs, one that will be appreciated by both students and researchers alike.
Author | : Sadri Hassani |
Publisher | : Springer Science & Business Media |
Total Pages | : 673 |
Release | : 2013-11-11 |
Genre | : Mathematics |
ISBN | : 038721562X |
Intended to follow the usual introductory physics courses, this book contains many original, lucid and relevant examples from the physical sciences, problems at the ends of chapters, and boxes to emphasize important concepts to help guide students through the material.
Author | : Sadri Hassani |
Publisher | : Springer Science & Business Media |
Total Pages | : 1052 |
Release | : 2002-02-08 |
Genre | : Science |
ISBN | : 9780387985794 |
For physics students interested in the mathematics they use, and for math students interested in seeing how some of the ideas of their discipline find realization in an applied setting. The presentation strikes a balance between formalism and application, between abstract and concrete. The interconnections among the various topics are clarified both by the use of vector spaces as a central unifying theme, recurring throughout the book, and by putting ideas into their historical context. Enough of the essential formalism is included to make the presentation self-contained.
Author | : Arthur Godon Webster |
Publisher | : Courier Dover Publications |
Total Pages | : 465 |
Release | : 2016-06-20 |
Genre | : Mathematics |
ISBN | : 0486805158 |
A classic treatise on partial differential equations, this comprehensive work by one of America's greatest early mathematical physicists covers the basic method, theory, and application of partial differential equations. In addition to its value as an introductory and supplementary text for students, this volume constitutes a fine reference for mathematicians, physicists, and research engineers. Detailed coverage includes Fourier series; integral and elliptic equations; spherical, cylindrical, and ellipsoidal harmonics; Cauchy's method; boundary problems; the Riemann-Volterra method; and many other basic topics. The self-contained treatment fully develops the theory and application of partial differential equations to virtually every relevant field: vibration, elasticity, potential theory, the theory of sound, wave propagation, heat conduction, and many more. A helpful Appendix provides background on Jacobians, double limits, uniform convergence, definite integrals, complex variables, and linear differential equations.
Author | : Mohamed Ben Ayed |
Publisher | : Cambridge University Press |
Total Pages | : 471 |
Release | : 2019-05-02 |
Genre | : Mathematics |
ISBN | : 1108431631 |
Presents the state of the art in PDEs, including the latest research and short courses accessible to graduate students.
Author | : Victor Henner |
Publisher | : CRC Press |
Total Pages | : 852 |
Release | : 2009-06-18 |
Genre | : Mathematics |
ISBN | : 1439865167 |
This book is a text on partial differential equations (PDEs) of mathematical physics and boundary value problems, trigonometric Fourier series, and special functions. This is the core content of many courses in the fields of engineering, physics, mathematics, and applied mathematics. The accompanying software provides a laboratory environment that
Author | : Walter A. Strauss |
Publisher | : John Wiley & Sons |
Total Pages | : 467 |
Release | : 2007-12-21 |
Genre | : Mathematics |
ISBN | : 0470054565 |
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.