Parametric Statistical Inference

Parametric Statistical Inference
Author: Shelemyahu Zacks
Publisher: Elsevier
Total Pages: 404
Release: 2014-05-20
Genre: Mathematics
ISBN: 1483150496

Parametric Statistical Inference: Basic Theory and Modern Approaches presents the developments and modern trends in statistical inference to students who do not have advanced mathematical and statistical preparation. The topics discussed in the book are basic and common to many fields of statistical inference and thus serve as a jumping board for in-depth study. The book is organized into eight chapters. Chapter 1 provides an overview of how the theory of statistical inference is presented in subsequent chapters. Chapter 2 briefly discusses statistical distributions and their properties. Chapter 3 is devoted to the problem of sufficient statistics and the information in samples, and Chapter 4 presents some basic results from the theory of testing statistical hypothesis. In Chapter 5, the classical theory of estimation is developed. Chapter 6 discusses the efficiency of estimators and some large sample properties, while Chapter 7 studies the topics on confidence intervals. Finally, Chapter 8 is about decision theoretic and Bayesian approach in testing and estimation. Senior undergraduate and graduate students in statistics and mathematics, and those who have taken an introductory course in probability will highly benefit from this book.

A Parametric Approach to Nonparametric Statistics

A Parametric Approach to Nonparametric Statistics
Author: Mayer Alvo
Publisher: Springer
Total Pages: 277
Release: 2018-10-12
Genre: Mathematics
ISBN: 3319941534

This book demonstrates that nonparametric statistics can be taught from a parametric point of view. As a result, one can exploit various parametric tools such as the use of the likelihood function, penalized likelihood and score functions to not only derive well-known tests but to also go beyond and make use of Bayesian methods to analyze ranking data. The book bridges the gap between parametric and nonparametric statistics and presents the best practices of the former while enjoying the robustness properties of the latter. This book can be used in a graduate course in nonparametrics, with parts being accessible to senior undergraduates. In addition, the book will be of wide interest to statisticians and researchers in applied fields.

All of Nonparametric Statistics

All of Nonparametric Statistics
Author: Larry Wasserman
Publisher: Springer Science & Business Media
Total Pages: 272
Release: 2006-09-10
Genre: Mathematics
ISBN: 0387306234

This text provides the reader with a single book where they can find accounts of a number of up-to-date issues in nonparametric inference. The book is aimed at Masters or PhD level students in statistics, computer science, and engineering. It is also suitable for researchers who want to get up to speed quickly on modern nonparametric methods. It covers a wide range of topics including the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets. The book’s dual approach includes a mixture of methodology and theory.

A History of Parametric Statistical Inference from Bernoulli to Fisher, 1713-1935

A History of Parametric Statistical Inference from Bernoulli to Fisher, 1713-1935
Author: Anders Hald
Publisher: Springer Science & Business Media
Total Pages: 221
Release: 2008-08-24
Genre: Mathematics
ISBN: 0387464093

This book offers a detailed history of parametric statistical inference. Covering the period between James Bernoulli and R.A. Fisher, it examines: binomial statistical inference; statistical inference by inverse probability; the central limit theorem and linear minimum variance estimation by Laplace and Gauss; error theory, skew distributions, correlation, sampling distributions; and the Fisherian Revolution. Lively biographical sketches of many of the main characters are featured throughout, including Laplace, Gauss, Edgeworth, Fisher, and Karl Pearson. Also examined are the roles played by DeMoivre, James Bernoulli, and Lagrange.

Parametric Statistical Inference

Parametric Statistical Inference
Author: James K. Lindsey
Publisher: Oxford University Press
Total Pages: 512
Release: 1996
Genre: Mathematics
ISBN: 9780198523598

Two unifying components of statistics are the likelihood function and the exponential family. These are brought together for the first time as the central themes in this book on statistical inference, written for advanced undergraduate and graduate students in mathematical statistics.

Concepts of Nonparametric Theory

Concepts of Nonparametric Theory
Author: J.W. Pratt
Publisher: Springer Science & Business Media
Total Pages: 476
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461259312

This book explores both non parametric and general statistical ideas by developing non parametric procedures in simple situations. The major goal is to give the reader a thorough intuitive understanding of the concepts underlying nonparametric procedures and a full appreciation of the properties and operating characteristics of those procedures covered. This book differs from most statistics books by including considerable philosophical and methodological discussion. Special attention is given to discussion of the strengths and weaknesses of various statistical methods and approaches. Difficulties that often arise in applying statistical theory to real data also receive substantial attention. The approach throughout is more conceptual than mathematical. The "Theorem-Proof" format is avoided; generally, properties are "shown," rather than "proved." In most cases the ideas behind the proof of an im portant result are discussed intuitively in the text and formal details are left as an exercise for the reader. We feel that the reader will learn more from working such things out than from checking step-by-step a complete presen tation of all details.

Parametric Statistical Change Point Analysis

Parametric Statistical Change Point Analysis
Author: Jie Chen
Publisher: Springer Science & Business Media
Total Pages: 190
Release: 2013-11-11
Genre: Mathematics
ISBN: 1475731310

Recently there has been a keen interest in the statistical analysis of change point detec tion and estimation. Mainly, it is because change point problems can be encountered in many disciplines such as economics, finance, medicine, psychology, geology, litera ture, etc. , and even in our daily lives. From the statistical point of view, a change point is a place or time point such that the observations follow one distribution up to that point and follow another distribution after that point. Multiple change points problem can also be defined similarly. So the change point(s) problem is two fold: one is to de cide if there is any change (often viewed as a hypothesis testing problem), another is to locate the change point when there is a change present (often viewed as an estimation problem). The earliest change point study can be traced back to the 1950s. During the fol lowing period of some forty years, numerous articles have been published in various journals and proceedings. Many of them cover the topic of single change point in the means of a sequence of independently normally distributed random variables. Another popularly covered topic is a change point in regression models such as linear regres sion and autoregression. The methods used are mainly likelihood ratio, nonparametric, and Bayesian. Few authors also considered the change point problem in other model settings such as the gamma and exponential.

Nonparametric Statistical Methods

Nonparametric Statistical Methods
Author: Myles Hollander
Publisher: John Wiley & Sons
Total Pages: 872
Release: 2013-11-25
Genre: Mathematics
ISBN: 1118553292

Praise for the Second Edition “This book should be an essential part of the personal library of every practicing statistician.”—Technometrics Thoroughly revised and updated, the new edition of Nonparametric Statistical Methods includes additional modern topics and procedures, more practical data sets, and new problems from real-life situations. The book continues to emphasize the importance of nonparametric methods as a significant branch of modern statistics and equips readers with the conceptual and technical skills necessary to select and apply the appropriate procedures for any given situation. Written by leading statisticians, Nonparametric Statistical Methods, Third Edition provides readers with crucial nonparametric techniques in a variety of settings, emphasizing the assumptions underlying the methods. The book provides an extensive array of examples that clearly illustrate how to use nonparametric approaches for handling one- or two-sample location and dispersion problems, dichotomous data, and one-way and two-way layout problems. In addition, the Third Edition features: The use of the freely available R software to aid in computation and simulation, including many new R programs written explicitly for this new edition New chapters that address density estimation, wavelets, smoothing, ranked set sampling, and Bayesian nonparametrics Problems that illustrate examples from agricultural science, astronomy, biology, criminology, education, engineering, environmental science, geology, home economics, medicine, oceanography, physics, psychology, sociology, and space science Nonparametric Statistical Methods, Third Edition is an excellent reference for applied statisticians and practitioners who seek a review of nonparametric methods and their relevant applications. The book is also an ideal textbook for upper-undergraduate and first-year graduate courses in applied nonparametric statistics.

Permutation Tests

Permutation Tests
Author: Phillip Good
Publisher: Springer Science & Business Media
Total Pages: 238
Release: 2013-03-09
Genre: Mathematics
ISBN: 1475723466

A step-by-step guide to the application of permutation tests in biology, medicine, science, and engineering. The intuitive and informal style makes this manual ideally suitable for students and researchers approaching these methods for the first time. In particular, it shows how to handle the problems of missing and censored data, nonresponders, after-the-fact covariates, and outliers.