Parameter Identification In Lumped Compartment Cardiorespiratory Models
Download Parameter Identification In Lumped Compartment Cardiorespiratory Models full books in PDF, epub, and Kindle. Read online free Parameter Identification In Lumped Compartment Cardiorespiratory Models ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Jerry J. Batzel |
Publisher | : Springer |
Total Pages | : 270 |
Release | : 2012-12-14 |
Genre | : Mathematics |
ISBN | : 3642328822 |
This volume synthesizes theoretical and practical aspects of both the mathematical and life science viewpoints needed for modeling of the cardiovascular-respiratory system specifically and physiological systems generally. Theoretical points include model design, model complexity and validation in the light of available data, as well as control theory approaches to feedback delay and Kalman filter applications to parameter identification. State of the art approaches using parameter sensitivity are discussed for enhancing model identifiability through joint analysis of model structure and data. Practical examples illustrate model development at various levels of complexity based on given physiological information. The sensitivity-based approaches for examining model identifiability are illustrated by means of specific modeling examples. The themes presented address the current problem of patient-specific model adaptation in the clinical setting, where data is typically limited.
Author | : Nico Westerhof |
Publisher | : Springer Science & Business Media |
Total Pages | : 182 |
Release | : 2006-01-12 |
Genre | : Medical |
ISBN | : 0387233466 |
Hemodynamics makes it possible to characterize in a quantitative way, the function of the heart and arterial system, thereby producing information about what genetic and molecular processes are of importance for cardiovascular function. Snapshots of Hemodynamics: An Aid for Clinical Research and Graduate Education by Nico Westerhof, Nikos Stergiopulos and Mark I. M. Noble is a quick reference guide designed to help basic and clinical researchers as well as graduate students to understand hemodynamics. The layout of the book provides short and independent chapters that provide teaching diagrams as well as clear descriptions of the essentials of basic and applied principles of hemodynamics. References are provided at the end of each chapter for further reading and reference.
Author | : Gennady Bocharov |
Publisher | : Frontiers Media SA |
Total Pages | : 278 |
Release | : 2020-02-24 |
Genre | : |
ISBN | : 2889634612 |
The immune system provides the host organism with defense mechanisms against invading pathogens and tumor development and it plays an active role in tissue and organ regeneration. Deviations from the normal physiological functioning of the immune system can lead to the development of diseases with various pathologies including autoimmune diseases and cancer. Modern research in immunology is characterized by an unprecedented level of detail that has progressed towards viewing the immune system as numerous components that function together as a whole network. Currently, we are facing significant difficulties in analyzing the data being generated from high-throughput technologies for understanding immune system dynamics and functions, a problem known as the ‘curse of dimensionality’. As the mainstream research in mathematical immunology is based on low-resolution models, a fundamental question is how complex the mathematical models should be? To respond to this challenging issue, we advocate a hypothesis-driven approach to formulate and apply available mathematical modelling technologies for understanding the complexity of the immune system. Moreover, pure empirical analyses of immune system behavior and the system’s response to external perturbations can only produce a static description of the individual components of the immune system and the interactions between them. Shifting our view of the immune system from a static schematic perception to a dynamic multi-level system is a daunting task. It requires the development of appropriate mathematical methodologies for the holistic and quantitative analysis of multi-level molecular and cellular networks. Their coordinated behavior is dynamically controlled via distributed feedback and feedforward mechanisms which altogether orchestrate immune system functions. The molecular regulatory loops inherent to the immune system that mediate cellular behaviors, e.g. exhaustion, suppression, activation and tuning, can be analyzed using mathematical categories such as multi-stability, switches, ultra-sensitivity, distributed system, graph dynamics, or hierarchical control. GB is supported by the Russian Science Foundation (grant 18-11-00171). AM is also supported by grants from the Spanish Ministry of Economy, Industry and Competitiveness and FEDER grant no. SAF2016-75505-R, the “María de Maeztu” Programme for Units of Excellence in R&D (MDM-2014-0370) and the Russian Science Foundation (grant 18-11-00171).
Author | : Ákos Jobbágy |
Publisher | : Springer Science & Business Media |
Total Pages | : 1477 |
Release | : 2012-02-02 |
Genre | : Technology & Engineering |
ISBN | : 3642235085 |
This volume presents the 5th European Conference of the International Federation for Medical and Biological Engineering (EMBEC), held in Budapest, 14-18 September, 2011. The scientific discussion on the conference and in this conference proceedings include the following issues: - Signal & Image Processing - ICT - Clinical Engineering and Applications - Biomechanics and Fluid Biomechanics - Biomaterials and Tissue Repair - Innovations and Nanotechnology - Modeling and Simulation - Education and Professional
Author | : Luca Formaggia |
Publisher | : Springer Science & Business Media |
Total Pages | : 528 |
Release | : 2010-06-27 |
Genre | : Mathematics |
ISBN | : 8847011523 |
Mathematical models and numerical simulations can aid the understanding of physiological and pathological processes. This book offers a mathematically sound and up-to-date foundation to the training of researchers and serves as a useful reference for the development of mathematical models and numerical simulation codes.
Author | : Belén Casas Garcia |
Publisher | : Linköping University Electronic Press |
Total Pages | : 92 |
Release | : 2019-02-15 |
Genre | : |
ISBN | : 9176852172 |
Current diagnostic tools for assessing cardiovascular disease mostly focus on measuring a given biomarker at a specific spatial location where an abnormality is suspected. However, as a result of the dynamic and complex nature of the cardiovascular system, the analysis of isolated biomarkers is generally not sufficient to characterize the pathological mechanisms behind a disease. Model-based approaches that integrate the mechanisms through which different components interact, and present possibilities for system-level analyses, give us a better picture of a patient’s overall health status. One of the main goals of cardiovascular modelling is the development of personalized models based on clinical measurements. Recent years have seen remarkable advances in medical imaging and the use of personalized models is slowly becoming a reality. Modern imaging techniques can provide an unprecedented amount of anatomical and functional information about the heart and vessels. In this context, three-dimensional, three-directional, cine phase-contrast (PC) magnetic resonance imaging (MRI), commonly referred to as 4D Flow MRI, arises as a powerful tool for creating personalized models. 4D Flow MRI enables the measurement of time-resolved velocity information with volumetric coverage. Besides providing a rich dataset within a single acquisition, the technique permits retrospective analysis of the data at any location within the acquired volume. This thesis focuses on improving subject-specific assessment of cardiovascular function through model-based analysis of 4D Flow MRI data. By using computational models, we aimed to provide mechanistic explanations of the underlying physiological processes, derive novel or improved hemodynamic markers, and estimate quantities that typically require invasive measurements. Paper I presents an evaluation of current markers of stenosis severity using advanced models to simulate flow through a stenosis. Paper II presents a framework to personalize a reduced-order, mechanistic model of the cardiovascular system using exclusively non-invasive measurements, including 4D Flow MRI data. The modelling approach can unravel a number of clinically relevant parameters from the input data, including those representing the contraction and relaxation patterns of the left ventricle, and provide estimations of the pressure-volume loop. In Paper III, this framework is applied to study cardiovascular function at rest and during stress conditions, and the capability of the model to infer load-independent measures of heart function based on the imaging data is demonstrated. Paper IV focuses on evaluating the reliability of the model parameters as a step towards translation of the model to the clinic.
Author | : Mohd Hafiz Mohd |
Publisher | : Springer Nature |
Total Pages | : 440 |
Release | : 2021-06-10 |
Genre | : Mathematics |
ISBN | : 9811626294 |
This book discusses the latest progresses and developments on complex systems research and intends to give an exposure to prospective readers about the theoretical and practical aspects of mathematical modelling, numerical simulation and agent-based modelling frameworks. The main purpose of this book is to emphasize a unified approach to complex systems analysis, which goes beyond to examine complicated phenomena of numerous real-life systems; this is done by investigating a huge number of components that interact with each other at different (microscopic and macroscopic) scales; new insights and emergent collective behaviours can evolve from the interactions between individual components and also with their environments. These tools and concepts permit us to better understand the patterns of various real-life systems and help us to comprehend the mechanisms behind which distinct factors shaping some complex systems phenomena being influenced. This book is published in conjunction with the International Workshop on Complex Systems Modelling & Simulation 2019 (CoSMoS 2019): IoT & Big Data Integration. This international event was held at the Universiti Sains Malaysia Main Campus, Penang, Malaysia, from 8 to 11 April 2019. This book appeals to readers interested in complex systems research and other related areas such as mathematical modelling, numerical simulation and agent-based modelling frameworks.
Author | : Olaf Dössel |
Publisher | : Springer Science & Business Media |
Total Pages | : 971 |
Release | : 2010-01-04 |
Genre | : Technology & Engineering |
ISBN | : 3642038859 |
Present Your Research to the World! The World Congress 2009 on Medical Physics and Biomedical Engineering – the triennial scientific meeting of the IUPESM - is the world’s leading forum for presenting the results of current scientific work in health-related physics and technologies to an international audience. With more than 2,800 presentations it will be the biggest conference in the fields of Medical Physics and Biomedical Engineering in 2009! Medical physics, biomedical engineering and bioengineering have been driving forces of innovation and progress in medicine and healthcare over the past two decades. As new key technologies arise with significant potential to open new options in diagnostics and therapeutics, it is a multidisciplinary task to evaluate their benefit for medicine and healthcare with respect to the quality of performance and therapeutic output. Covering key aspects such as information and communication technologies, micro- and nanosystems, optics and biotechnology, the congress will serve as an inter- and multidisciplinary platform that brings together people from basic research, R&D, industry and medical application to discuss these issues. As a major event for science, medicine and technology the congress provides a comprehensive overview and in–depth, first-hand information on new developments, advanced technologies and current and future applications. With this Final Program we would like to give you an overview of the dimension of the congress and invite you to join us in Munich! Olaf Dössel Congress President Wolfgang C.
Author | : Z. M. Arnez |
Publisher | : WIT Press |
Total Pages | : 545 |
Release | : 2003-03-11 |
Genre | : Technology & Engineering |
ISBN | : 1853129658 |
Computer models have become increasingly successful in simulating biological phenomena. The advantages of this approach are numerous, particularly in biomedicine where it has led to a better understanding of the mechanics of physiological processes. The use of computational models has also spread to many applications in medicine, as demonstrated by the contents of this volume. Containing papers presented at the Fifth International Conference on Computer Simulations in Biomedicine, the book covers a broad spectrum of topics on applications in this area. The contributions featured are arranged in sections according to their medical and biological perspective in order to make the contents more accessible to medical professionals. Over 50 papers are included and these are divided under the general headings: Simulation of Physiological Processes; Cardiovascular System (Vascular System; Lung; Cardiac; Applications); Artificial Limbs & Joints – Orthopaedics & Biomechanics; Electrical Stimulation (Functional Electrical Stimulation; Cellular Engineering); Data Acquisition & Computer Vision – Analysis & Diagnostics; Applications of Artificial Intelligence in Medicine; and Virtual & Intelligent Environments.
Author | : Julius Guccione |
Publisher | : Frontiers Media SA |
Total Pages | : 289 |
Release | : 2020-01-13 |
Genre | : |
ISBN | : 2889633233 |