Parallel Solution Of Partial Differential Equations
Download Parallel Solution Of Partial Differential Equations full books in PDF, epub, and Kindle. Read online free Parallel Solution Of Partial Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Are Magnus Bruaset |
Publisher | : Springer Science & Business Media |
Total Pages | : 491 |
Release | : 2006-03-05 |
Genre | : Mathematics |
ISBN | : 3540316191 |
Since the dawn of computing, the quest for a better understanding of Nature has been a driving force for technological development. Groundbreaking achievements by great scientists have paved the way from the abacus to the supercomputing power of today. When trying to replicate Nature in the computer’s silicon test tube, there is need for precise and computable process descriptions. The scienti?c ?elds of Ma- ematics and Physics provide a powerful vehicle for such descriptions in terms of Partial Differential Equations (PDEs). Formulated as such equations, physical laws can become subject to computational and analytical studies. In the computational setting, the equations can be discreti ed for ef?cient solution on a computer, leading to valuable tools for simulation of natural and man-made processes. Numerical so- tion of PDE-based mathematical models has been an important research topic over centuries, and will remain so for centuries to come. In the context of computer-based simulations, the quality of the computed results is directly connected to the model’s complexity and the number of data points used for the computations. Therefore, computational scientists tend to ?ll even the largest and most powerful computers they can get access to, either by increasing the si e of the data sets, or by introducing new model terms that make the simulations more realistic, or a combination of both. Today, many important simulation problems can not be solved by one single computer, but calls for parallel computing.
Author | : Petter Bjorstad |
Publisher | : Springer Science & Business Media |
Total Pages | : 309 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 146121176X |
This IMA Volume in Mathematics and its Applications PARALLEL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS is based on the proceedings of a workshop with the same title. The work shop was an integral part of the 1996-97IMA program on "MATHEMAT ICS IN HIGH-PERFORMANCE COMPUTING." I would like to thank Petter Bj0rstad of the Institutt for Informatikk, University of Bergen and Mitchell Luskin of the School of Mathematics, University of Minnesota for their excellent work as organizers of the meeting and for editing the proceedings. I also take this opportunity to thank the National Science Founda tion (NSF), Department of Energy (DOE), and the Army Research Office (ARO), whose financial support made the workshop possible. Willard Miller, Jr., Professor and Director v PREFACE The numerical solution of partial differential equations has been of major importance to the development of many technologies and has been the target of much of the development of parallel computer hardware and software. Parallel computers offer the promise of greatly increased perfor mance and the routine calculation of previously intractable problems. The papers in this volume were presented at the IMA workshop on the Paral lel Solution of PDE held during June 9-13, 1997. The workshop brought together leading numerical analysts, computer scientists, and engineers to assess the state-of-the-art and to consider future directions.
Author | : Tarek Mathew |
Publisher | : Springer Science & Business Media |
Total Pages | : 775 |
Release | : 2008-06-25 |
Genre | : Mathematics |
ISBN | : 354077209X |
Domain decomposition methods are divide and conquer computational methods for the parallel solution of partial differential equations of elliptic or parabolic type. The methodology includes iterative algorithms, and techniques for non-matching grid discretizations and heterogeneous approximations. This book serves as a matrix oriented introduction to domain decomposition methodology. A wide range of topics are discussed include hybrid formulations, Schwarz, and many more.
Author | : Ed Bueler |
Publisher | : SIAM |
Total Pages | : 407 |
Release | : 2020-10-22 |
Genre | : Mathematics |
ISBN | : 1611976316 |
The Portable, Extensible Toolkit for Scientific Computation (PETSc) is an open-source library of advanced data structures and methods for solving linear and nonlinear equations and for managing discretizations. This book uses these modern numerical tools to demonstrate how to solve nonlinear partial differential equations (PDEs) in parallel. It starts from key mathematical concepts, such as Krylov space methods, preconditioning, multigrid, and Newton’s method. In PETSc these components are composed at run time into fast solvers. Discretizations are introduced from the beginning, with an emphasis on finite difference and finite element methodologies. The example C programs of the first 12 chapters, listed on the inside front cover, solve (mostly) elliptic and parabolic PDE problems. Discretization leads to large, sparse, and generally nonlinear systems of algebraic equations. For such problems, mathematical solver concepts are explained and illustrated through the examples, with sufficient context to speed further development. PETSc for Partial Differential Equations addresses both discretizations and fast solvers for PDEs, emphasizing practice more than theory. Well-structured examples lead to run-time choices that result in high solver performance and parallel scalability. The last two chapters build on the reader’s understanding of fast solver concepts when applying the Firedrake Python finite element solver library. This textbook, the first to cover PETSc programming for nonlinear PDEs, provides an on-ramp for graduate students and researchers to a major area of high-performance computing for science and engineering. It is suitable as a supplement for courses in scientific computing or numerical methods for differential equations.
Author | : Jianping Zhu |
Publisher | : World Scientific |
Total Pages | : 284 |
Release | : 1994 |
Genre | : Computers |
ISBN | : 9789810215781 |
This is an introductory book on supercomputer applications written by a researcher who is working on solving scientific and engineering application problems on parallel computers. The book is intended to quickly bring researchers and graduate students working on numerical solutions of partial differential equations with various applications into the area of parallel processing.The book starts from the basic concepts of parallel processing, like speedup, efficiency and different parallel architectures, then introduces the most frequently used algorithms for solving PDEs on parallel computers, with practical examples. Finally, it discusses more advanced topics, including different scalability metrics, parallel time stepping algorithms and new architectures and heterogeneous computing networks which have emerged in the last few years of high performance computing. Hundreds of references are also included in the book to direct interested readers to more detailed and in-depth discussions of specific topics.
Author | : Walter A. Strauss |
Publisher | : John Wiley & Sons |
Total Pages | : 467 |
Release | : 2007-12-21 |
Genre | : Mathematics |
ISBN | : 0470054565 |
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Author | : Heinz-Otto Kreiss |
Publisher | : Springer Science & Business Media |
Total Pages | : 100 |
Release | : 2001-04-01 |
Genre | : Mathematics |
ISBN | : 9783764361259 |
This book studies time-dependent partial differential equations and their numerical solution, developing the analytic and the numerical theory in parallel, and placing special emphasis on the discretization of boundary conditions. The theoretical results are then applied to Newtonian and non-Newtonian flows, two-phase flows and geophysical problems. This book will be a useful introduction to the field for applied mathematicians and graduate students.
Author | : Craig C. Douglas |
Publisher | : SIAM |
Total Pages | : 153 |
Release | : 2003-01-01 |
Genre | : Technology & Engineering |
ISBN | : 9780898718171 |
This compact yet thorough tutorial is the perfect introduction to the basic concepts of solving partial differential equations (PDEs) using parallel numerical methods. In just eight short chapters, the authors provide readers with enough basic knowledge of PDEs, discretization methods, solution techniques, parallel computers, parallel programming, and the run-time behavior of parallel algorithms to allow them to understand, develop, and implement parallel PDE solvers. Examples throughout the book are intentionally kept simple so that the parallelization strategies are not dominated by technical details.
Author | : James M. Ortega |
Publisher | : SIAM |
Total Pages | : 100 |
Release | : 1985-01-01 |
Genre | : Mathematics |
ISBN | : 9781611971774 |
This volume reviews, in the context of partial differential equations, algorithm development that has been specifically aimed at computers that exhibit some form of parallelism. Emphasis is on the solution of PDEs because these are typically the problems that generate high computational demands. The authors discuss architectural features of these computers insomuch as they influence algorithm performance, and provide insight into algorithm characteristics that allow effective use of hardware.
Author | : Kevin Burrage |
Publisher | : Oxford University Press on Demand |
Total Pages | : 446 |
Release | : 1995 |
Genre | : History |
ISBN | : 9780198534327 |
This book presents an up-to-date exposition of the current `state of the art' of numerical methods for solving ordinary differential equations in a parallel computing environment. Although the main focus is on problems of initial value type, consideration will also be given to boundary valueproblems and partial differential equations. Furthermore, because linear algebra is an important component of the solution of differential equations, a complete chapter is devoted to the parallel solution of linear systems of equations. In addition to presenting an overview of parallel computing ingeneral, two chapters are devoted to a summary of existing sequential differential equation methods. The parallel techniques discussed include parallelism across the method, parallelism across the step, parallelism across the system, and dynamic iteration. The book concludes with a chapter on thebehaviour of a parallel code based on waveform relaxation.This comprehensive book is unique in its content and provides a balance between theoretical and practical issues by providing general frameworks in which to study parallel methods.