P-adic Aspects Of Modular Forms

P-adic Aspects Of Modular Forms
Author: Baskar Balasubramanyam
Publisher: World Scientific
Total Pages: 342
Release: 2016-06-14
Genre: Mathematics
ISBN: 9814719242

The aim of this book is to give a systematic exposition of results in some important cases where p-adic families and p-adic L-functions are studied. We first look at p-adic families in the following cases: general linear groups, symplectic groups and definite unitary groups. We also look at applications of this theory to modularity lifting problems. We finally consider p-adic L-functions for GL(2), the p-adic adjoint L-functions and some cases of higher GL(n).

Arithmetic of p-adic Modular Forms

Arithmetic of p-adic Modular Forms
Author: Fernando Q. Gouvea
Publisher: Springer
Total Pages: 129
Release: 2006-11-14
Genre: Mathematics
ISBN: 3540388540

The central topic of this research monograph is the relation between p-adic modular forms and p-adic Galois representations, and in particular the theory of deformations of Galois representations recently introduced by Mazur. The classical theory of modular forms is assumed known to the reader, but the p-adic theory is reviewed in detail, with ample intuitive and heuristic discussion, so that the book will serve as a convenient point of entry to research in that area. The results on the U operator and on Galois representations are new, and will be of interest even to the experts. A list of further problems in the field is included to guide the beginner in his research. The book will thus be of interest to number theorists who wish to learn about p-adic modular forms, leading them rapidly to interesting research, and also to the specialists in the subject.

Hilbert Modular Forms: mod $p$ and $p$-Adic Aspects

Hilbert Modular Forms: mod $p$ and $p$-Adic Aspects
Author: Fabrizio Andreatta
Publisher: American Mathematical Soc.
Total Pages: 114
Release: 2005
Genre: Mathematics
ISBN: 0821836099

We study Hilbert modular forms in characteristic $p$ and over $p$-adic rings. In the characteristic $p$ theory we describe the kernel and image of the $q$-expansion map and prove the existence of filtration for Hilbert modular forms; we define operators $U$, $V$ and $\Theta_\chi$ and study the variation of the filtration under these operators. Our methods are geometric - comparing holomorphic Hilbert modular forms with rational functions on a moduli scheme with level-$p$ structure, whose poles are supported on the non-ordinary locus.In the $p$-adic theory we study congruences between Hilbert modular forms. This applies to the study of congruences between special values of zeta functions of totally real fields. It also allows us to define $p$-adic Hilbert modular forms 'a la Serre' as $p$-adic uniform limit of classical modular forms, and compare them with $p$-adic modular forms 'a la Katz' that are regular functions on a certain formal moduli scheme. We show that the two notions agree for cusp forms and for a suitable class of weights containing all the classical ones. We extend the operators $V$ and $\Theta_\chi$ to the $p$-adic setting.

Computational Aspects of Modular Forms and Galois Representations

Computational Aspects of Modular Forms and Galois Representations
Author: Bas Edixhoven
Publisher: Princeton University Press
Total Pages: 438
Release: 2011-06-20
Genre: Mathematics
ISBN: 0691142017

Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. Their Fourier coefficients, with Ramanujan's tau-function as a typical example, have deep arithmetic significance. Prior to this book, the fastest known algorithms for computing these Fourier coefficients took exponential time, except in some special cases. The case of elliptic curves (Schoof's algorithm) was at the birth of elliptic curve cryptography around 1985. This book gives an algorithm for computing coefficients of modular forms of level one in polynomial time. For example, Ramanujan's tau of a prime number p can be computed in time bounded by a fixed power of the logarithm of p. Such fast computation of Fourier coefficients is itself based on the main result of the book: the computation, in polynomial time, of Galois representations over finite fields attached to modular forms by the Langlands program. Because these Galois representations typically have a nonsolvable image, this result is a major step forward from explicit class field theory, and it could be described as the start of the explicit Langlands program. The computation of the Galois representations uses their realization, following Shimura and Deligne, in the torsion subgroup of Jacobian varieties of modular curves. The main challenge is then to perform the necessary computations in time polynomial in the dimension of these highly nonlinear algebraic varieties. Exact computations involving systems of polynomial equations in many variables take exponential time. This is avoided by numerical approximations with a precision that suffices to derive exact results from them. Bounds for the required precision--in other words, bounds for the height of the rational numbers that describe the Galois representation to be computed--are obtained from Arakelov theory. Two types of approximations are treated: one using complex uniformization and another one using geometry over finite fields. The book begins with a concise and concrete introduction that makes its accessible to readers without an extensive background in arithmetic geometry. And the book includes a chapter that describes actual computations.

Lectures on Hilbert Modular Varieties and Modular Forms

Lectures on Hilbert Modular Varieties and Modular Forms
Author: Eyal Zvi Goren
Publisher: American Mathematical Soc.
Total Pages: 282
Release: 2002
Genre: Mathematics
ISBN: 082181995X

This book is devoted to certain aspects of the theory of $p$-adic Hilbert modular forms and moduli spaces of abelian varieties with real multiplication. The theory of $p$-adic modular forms is presented first in the elliptic case, introducing the reader to key ideas of N. M. Katz and J.-P. Serre. It is re-interpreted from a geometric point of view, which is developed to present the rudiments of a similar theory for Hilbert modular forms. The theory of moduli spaces of abelianvarieties with real multiplication is presented first very explicitly over the complex numbers. Aspects of the general theory are then exposed, in particular, local deformation theory of abelian varieties in positive characteristic. The arithmetic of $p$-adic Hilbert modular forms and the geometry ofmoduli spaces of abelian varieties are related. This relation is used to study $q$-expansions of Hilbert modular forms, on the one hand, and stratifications of moduli spaces on the other hand. The book is addressed to graduate students and non-experts. It attempts to provide the necessary background to all concepts exposed in it. It may serve as a textbook for an advanced graduate course.

Modular Forms, a Computational Approach

Modular Forms, a Computational Approach
Author: William A. Stein
Publisher: American Mathematical Soc.
Total Pages: 290
Release: 2007-02-13
Genre: Mathematics
ISBN: 0821839608

This marvellous and highly original book fills a significant gap in the extensive literature on classical modular forms. This is not just yet another introductory text to this theory, though it could certainly be used as such in conjunction with more traditional treatments. Its novelty lies in its computational emphasis throughout: Stein not only defines what modular forms are, but shows in illuminating detail how one can compute everything about them in practice. This is illustrated throughout the book with examples from his own (entirely free) software package SAGE, which really bring the subject to life while not detracting in any way from its theoretical beauty. The author is the leading expert in computations with modular forms, and what he says on this subject is all tried and tested and based on his extensive experience. As well as being an invaluable companion to those learning the theory in a more traditional way, this book will be a great help to those who wish to use modular forms in applications, such as in the explicit solution of Diophantine equations. There is also a useful Appendix by Gunnells on extensions to more general modular forms, which has enough in it to inspire many PhD theses for years to come. While the book's main readership will be graduate students in number theory, it will also be accessible to advanced undergraduates and useful to both specialists and non-specialists in number theory. --John E. Cremona, University of Nottingham William Stein is an associate professor of mathematics at the University of Washington at Seattle. He earned a PhD in mathematics from UC Berkeley and has held positions at Harvard University and UC San Diego. His current research interests lie in modular forms, elliptic curves, and computational mathematics.

p-Adic Automorphic Forms on Shimura Varieties

p-Adic Automorphic Forms on Shimura Varieties
Author: Haruzo Hida
Publisher: Springer Science & Business Media
Total Pages: 414
Release: 2004-05-10
Genre: Mathematics
ISBN: 9780387207117

This book covers the following three topics in a manner accessible to graduate students who have an understanding of algebraic number theory and scheme theoretic algebraic geometry: 1. An elementary construction of Shimura varieties as moduli of abelian schemes. 2. p-adic deformation theory of automorphic forms on Shimura varieties. 3. A simple proof of irreducibility of the generalized Igusa tower over the Shimura variety. The book starts with a detailed study of elliptic and Hilbert modular forms and reaches to the forefront of research of Shimura varieties associated with general classical groups. The method of constructing p-adic analytic families and the proof of irreducibility was recently discovered by the author. The area covered in this book is now a focal point of research worldwide with many far-reaching applications that have led to solutions of longstanding problems and conjectures. Specifically, the use of p-adic elliptic and Hilbert modular forms have proven essential in recent breakthroughs in number theory (for example, the proof of Fermat's Last Theorem and the Shimura-Taniyama conjecture by A. Wiles and others). Haruzo Hida is Professor of Mathematics at University of California, Los Angeles. His previous books include Modular Forms and Galois Cohomology (Cambridge University Press 2000) and Geometric Modular Forms and Elliptic Curves (World Scientific Publishing Company 2000).

Supersingular P-adic L-functions, Maass-Shimura Operators and Waldspurger Formulas

Supersingular P-adic L-functions, Maass-Shimura Operators and Waldspurger Formulas
Author: Daniel Kriz
Publisher: Princeton University Press
Total Pages: 280
Release: 2021-11-09
Genre: Mathematics
ISBN: 0691216479

A groundbreaking contribution to number theory that unifies classical and modern results This book develops a new theory of p-adic modular forms on modular curves, extending Katz's classical theory to the supersingular locus. The main novelty is to move to infinite level and extend coefficients to period sheaves coming from relative p-adic Hodge theory. This makes it possible to trivialize the Hodge bundle on the infinite-level modular curve by a "canonical differential" that restricts to the Katz canonical differential on the ordinary Igusa tower. Daniel Kriz defines generalized p-adic modular forms as sections of relative period sheaves transforming under the Galois group of the modular curve by weight characters. He introduces the fundamental de Rham period, measuring the position of the Hodge filtration in relative de Rham cohomology. This period can be viewed as a counterpart to Scholze's Hodge-Tate period, and the two periods satisfy a Legendre-type relation. Using these periods, Kriz constructs splittings of the Hodge filtration on the infinite-level modular curve, defining p-adic Maass-Shimura operators that act on generalized p-adic modular forms as weight-raising operators. Through analysis of the p-adic properties of these Maass-Shimura operators, he constructs new p-adic L-functions interpolating central critical Rankin-Selberg L-values, giving analogues of the p-adic L-functions of Katz, Bertolini-Darmon-Prasanna, and Liu-Zhang-Zhang for imaginary quadratic fields in which p is inert or ramified. These p-adic L-functions yield new p-adic Waldspurger formulas at special values.

Some Applications of Modular Forms

Some Applications of Modular Forms
Author: Peter Sarnak
Publisher: Cambridge University Press
Total Pages: 124
Release: 1990-11-15
Genre: Mathematics
ISBN: 1316582442

The theory of modular forms and especially the so-called 'Ramanujan Conjectures' have been applied to resolve problems in combinatorics, computer science, analysis and number theory. This tract, based on the Wittemore Lectures given at Yale University, is concerned with describing some of these applications. In order to keep the presentation reasonably self-contained, Professor Sarnak begins by developing the necessary background material in modular forms. He then considers the solution of three problems: the Ruziewicz problem concerning finitely additive rotationally invariant measures on the sphere; the explicit construction of highly connected but sparse graphs: 'expander graphs' and 'Ramanujan graphs'; and the Linnik problem concerning the distribution of integers that represent a given large integer as a sum of three squares. These applications are carried out in detail. The book therefore should be accessible to a wide audience of graduate students and researchers in mathematics and computer science.