Oxidation Of C H Bonds
Download Oxidation Of C H Bonds full books in PDF, epub, and Kindle. Read online free Oxidation Of C H Bonds ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Wenjun Lu |
Publisher | : John Wiley & Sons |
Total Pages | : 524 |
Release | : 2017-02-03 |
Genre | : Science |
ISBN | : 1119092515 |
A combination of oxidation methods and C‒H bond functionalization, this book emphasizes mechanistic understanding and critical analysis of synthetic reactions to offer a guide or manual for practicing chemists. • Combines oxidation methods and C‒H bond functionalization, two of the most important aspects of organic synthesis • Deals with C‒H bonds, an area of dynamic and continuous research across chemistry and catalysis • Helps readers understand the fundamental and applied differences among various oxidation methods and reactions • Covers mechanistic details, conditions, oxidation reagents, and practical aspects of different reactions
Author | : Karen I. Goldberg |
Publisher | : ACS Symposium |
Total Pages | : 0 |
Release | : 2004 |
Genre | : Science |
ISBN | : 9780841238497 |
Activation and Functionalization of C-H Bonds explores recent developments in the reaction chemistry of solution-phase transition-metal based systems with simple hydrocarbons and with more complex organic molecules. More than 20 internationally leading research groups contributed to this volume, and their chapters cover such topics as fundamental theoretical and mechanistic studies of C-H bond activation by metal complexes, catalytic systems for alkane functionalization, and new applications in synthetic organic chemistry. An introductory chapter offers an overview of stoichiometric and catalytic reactions of C-H bonds with transition metal complexes. The C-H bond is the most widespread linkage in organic chemistry, present in virtually every organic molecule. Unfortunately, C-H bonds are famously resistant to selective chemical transformations. The development of methods for their selective transformations has enormous potential value in fields ranging from the chemistry of fuels (for example, the conversion of methane to methanol) to the synthesis of the most complex organic molecules.
Author | : G. Cainelli |
Publisher | : Springer Science & Business Media |
Total Pages | : 272 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 3642693628 |
Chromium oxidation, well known and widely explored in organic chemistry since the very beginning of this science, is a topic of current interest for the organic chemist as evidenced by the continuous development of new techni ques and procedures reported in the literature. Chromium oxidation is a simple process which can be easily performed in the laboratory and scaled up in industry as well. Although almost every oxidizable organic functional group may undergo chromium oxidation, the most important fields of appli cation are the oxidation of alcohols, allylic and benzylic oxidation, oxidative degradation and oxidation of some organometallic compounds. A high degree of selectivity is often possible by choosing the most suitable reagent among those several ones now available. This book takes account of the various functional groups that undergo oxidation and the entire literature up to 1982. It has been written in the hope to help the synthetic organic chemist in his experimental work. For this purpose a number of tables comprising yields and references have been included; detailed descriptions of typical procedures are meant to show the experimental conditions and the scope of the reactions. We wish to thank Dr. Mario Orena for his valuable scientific and technical assistence and Prof. Bruno Camerino, who read the entire manuscript and corrected many of the errors. Bologna, February 1984 Gianfranco Cainelli Giuliana Cardillo Table of Contents I. Introduction . . . . . . . . . . .
Author | : Esteban Mejía |
Publisher | : Royal Society of Chemistry |
Total Pages | : 349 |
Release | : 2020-07-14 |
Genre | : Science |
ISBN | : 1839160349 |
Oxidation reactions are an important chemical transformation in both academia and industry. Among the major advances in the field has been the development of catalytic processes, which are not only selective and efficient, but also allow the replacement of common stoichiometric oxidants with molecular oxygen, ideally from air at atmospheric pressure. This results in processes with higher atom efficiency, where water is the only side product in line with the principles of green chemistry. Focusing on the use of molecular oxygen as the terminal oxidant, this book covers recent advances in both heterogeneous and homogeneous systems, with and without metals and on the “taming” of the highly reactive oxygen gas by use of micro-flow reactors and membranes. A useful reference for industrial and academic chemists working on oxidation processes, as well as green chemists.
Author | : Evgeny T. Denisov |
Publisher | : CRC Press |
Total Pages | : 1020 |
Release | : 2005-03-29 |
Genre | : Medical |
ISBN | : 142003085X |
Providing a comprehensive review of reactions of oxidation for different classes of organic compounds and polymers, and biological processes mediated by free radicals, Oxidation and Antioxidants in Organic Chemistry and Biology puts the data and bibliographical information you need into one easy-to-use resource. You will find up-to-date information
Author | : Christian Hess |
Publisher | : Royal Society of Chemistry |
Total Pages | : 453 |
Release | : 2011-07-22 |
Genre | : Science |
ISBN | : 1847559875 |
The book gives a comprehensive up-to-date summary of the existing information on the structural/electronic properties, chemistry and catalytic properties of vanadium and molybdenum containing catalysts. It discusses the importance of nanoscience for the controlled synthesis of catalysts with functional properties and introduces the necessary background regarding surface properties and preparation techniques, leading from a textbook level to the current state of knowledge. Then follows an extensive survey and analysis of the existing open and patent literature - an essential knowledge source for the development of the new generation of partial oxidation catalysts. Important examples from current research on partial oxidation reactions are reviewed from experts in the field. The next chapter discusses the importance of 2- and 3-dimensional model systems for a fundamental understanding of the structure of transition metal oxide catalysts and its correlation to reactivity. Finally, an outlook on research opportunities within the area of partial oxidation reactions is presented.
Author | : Jin-Quan Yu |
Publisher | : Springer |
Total Pages | : 400 |
Release | : 2010-06-16 |
Genre | : Science |
ISBN | : 3642123562 |
Table of Contents - Synthesis in the Key of Catellani: Norbornene-Mediated ortho C–H Functionalization - Mechanistic Considerations in the Development and Use of Azine, Diazine and Azole N-Oxides in Palladium-Catalyzed Direct Arylation - Palladium and Copper Catalysis in Regioselective, Intermolecular Coupling of C–H and C–Hal Bonds - Pd-Catalyzed C–H Bond Functionalization on the Indole and Pyrrole Nucleus - Remote C–H Activation via Through-Space Palladium and Rhodium Migrations - Palladium-Catalyzed Aryl–Aryl Bond Formation Through Double C–H Activation - Palladium-Catalyzed Allylic C–H Bond Functionalization of Olefins - Ruthenium-Catalyzed Direct Arylations Through C–H Bond Cleavages - Rhodium-Catalyzed C–H Bond Arylationof Arenes - Cross-Dehydrogenative Coupling Reactions of sp3-Hybridized C–H Bonds - Functionalization of Carbon–Hydrogen Bonds Through Transition Metal Carbenoid Insertion - Metal-Catalyzed Oxidations of C–H to C–N Bonds
Author | : Kenneth L. Rinehart |
Publisher | : Prentice Hall |
Total Pages | : 164 |
Release | : 1973 |
Genre | : Science |
ISBN | : |
Author | : Wei Zhang |
Publisher | : John Wiley & Sons |
Total Pages | : 1127 |
Release | : 2018-01-18 |
Genre | : Science |
ISBN | : 1119288584 |
An updated overview of the rapidly developing field of green techniques for organic synthesis and medicinal chemistry Green chemistry remains a high priority in modern organic synthesis and pharmaceutical R&D, with important environmental and economic implications. This book presents comprehensive coverage of green chemistry techniques for organic and medicinal chemistry applications, summarizing the available new technologies, analyzing each technique’s features and green chemistry characteristics, and providing examples to demonstrate applications for green organic synthesis and medicinal chemistry. The extensively revised edition of Green Techniques for Organic Synthesis and Medicinal Chemistry includes 7 entirely new chapters on topics including green chemistry and innovation, green chemistry metrics, green chemistry and biological drugs, and the business case for green chemistry in the generic pharmaceutical industry. It is divided into 4 parts. The first part introduces readers to the concepts of green chemistry and green engineering, global environmental regulations, green analytical chemistry, green solvents, and green chemistry metrics. The other three sections cover green catalysis, green synthetic techniques, and green techniques and strategies in the pharmaceutical industry. Includes more than 30% new and updated material—plus seven brand new chapters Edited by highly regarded experts in the field (Berkeley Cue is one of the fathers of Green Chemistry in Pharma) with backgrounds in academia and industry Brings together a team of international authors from academia, industry, government agencies, and consultancies (including John Warner, one of the founders of the field of Green Chemistry) Green Techniques for Organic Synthesis and Medicinal Chemistry, Second Edition is an essential resource on green chemistry technologies for academic researchers, R&D professionals, and students working in organic chemistry and medicinal chemistry.
Author | : Robertus J. M. Klein Gebbink |
Publisher | : John Wiley & Sons |
Total Pages | : 610 |
Release | : 2019-04-29 |
Genre | : Technology & Engineering |
ISBN | : 3527340610 |
An expert overview of current research, applications, and economic and environmental advantages The study and development of new homogeneous catalysts based on first-row metals (Mn, Fe, Co, Ni, and Cu) has grown significantly due to the economic and environmental advantages that non-noble metals present. Base metals offer reduced cost, greater supply, and lower toxicity levels than noble metals?enabling greater opportunity for scientific investigation and increased development of practical applications. Non-Noble Metal Catalysis provides an authoritative survey of the field, from fundamental concepts and computational methods to industrial applications and reaction classes. Recognized experts in organometallic chemistry and homogeneous catalysis, the authors present a comprehensive overview of the conceptual and practical aspects of non-noble metal catalysts. Examination of topics including non-innocent ligands, proton-coupled electron transfer, and multi-nuclear complexes provide essential background information, while areas such as kinetic lability and lifetimes of intermediates reflect current research and shifting trends in the field. This timely book demonstrates the efficacy of base metal catalysts in the pharmaceutical, fine-chemical, and agrochemical industries, addressing both environmental and economic concerns. Providing essential conceptual and practical exploration, this valuable resource: -Illustrates how unravelling new reactivity patterns can lead to new catalysts and new applications -Highlights the multiple advantages of using non-noble metals in homogenous catalysis -Demonstrates how the availability of non-noble metal catalysis reduces costs and leads to immense savings for the chemical industry -Reveals how non-noble metal catalysis are more sustainable than noble metals such as palladium or platinum Non-Noble Metal Catalysis: Molecular Approaches and Reactions is an indispensable source of up-to-date information for catalytic chemists, organic chemists, industrial chemists, organometallic chemists, and those seeking to broaden their knowledge of catalytic chemistry.