Organic Crystals I: Characterization

Organic Crystals I: Characterization
Author: Norbert Karl
Publisher: Springer Science & Business Media
Total Pages: 169
Release: 2012-12-06
Genre: Science
ISBN: 3642762530

Lattice defects of organic molecular crystals affect their optical or electrical properties by changing the local energy structure. Lattice defects also playa very important role in the chemical and physical properties, for example, as an active site of a catalyst or an initiating point of a solid state reaction. However, very little has been reported on the defect structure of real organic crystals. In the past ten years it became clear that the origin and the structure of the defects depend on the geometrical and chemical nature of the building units of the crystal, the molecules. Molecular size, form and anisotropy, charge distribution, etc. cause the characteristic structure of the defect. Accordingly, a defect structure found in one compound may not be found in others. The defect structure of an organic crystal cannot be defined solely by the displacement of the molecular center from the normal lattice site. A rotational displacement of a molecule is frequently accompanied by a parallel shift of the molecular center. In addition to the usual geometrical crystallographic defects, chemical defects are important too which originate, for example, from differences in the substitution sites of molecules carrying side groups. In order to reveal such defect structures, direct imaging of molecules by high resolution electron microscopy is the only direct method.

Applications of Calorimetry in a Wide Context

Applications of Calorimetry in a Wide Context
Author: Amal Ali Elkordy
Publisher: BoD – Books on Demand
Total Pages: 488
Release: 2013-01-23
Genre: Science
ISBN: 9535109472

Calorimetry, as a technique for thermal analysis, has a wide range of applications which are not only limited to studying the thermal characterisation (e.g. melting temperature, denaturation temperature and enthalpy change) of small and large drug molecules, but are also extended to characterisation of fuel, metals and oils. Differential Scanning Calorimetry is used to study the thermal behaviours of drug molecules and excipients by measuring the differential heat flow needed to maintain the temperature difference between the sample and reference cells equal to zero upon heating at a controlled programmed rate. Microcalorimetry is used to study the thermal transition and folding of biological macromolecules in dilute solutions. Microcalorimetry is applied in formulation and stabilisation of therapeutic proteins. This book presents research from all over the world on the applications of calorimetry on both solid and liquid states of materials.

Advances in Organic Crystal Chemistry

Advances in Organic Crystal Chemistry
Author: Masami Sakamoto
Publisher: Springer Nature
Total Pages: 532
Release: 2020-07-10
Genre: Science
ISBN: 9811550859

This book summarizes and records the recent notable advances in diverse topics in organic crystal chemistry, which has made substantial progress along with the rapid development of a variety of analysis and measurement techniques for solid organic materials. This review book is one of the volumes that are published periodically on this theme. The previous volume, published in 2015, systematically summarized the remarkable progress in assorted topics of organic crystal chemistry using organic solids and organic–inorganic hybrid materials during the previous 5 years, and it has been widely read. The present volume also shows the progress of organic solid chemistry in the last 5 years, with contributions mainly by invited members of the Division of Organic Crystal Chemistry of the Chemical Society of Japan (CSJ), together with prominent invited authors from countries other than Japan.

Nonlinear Optical Properties of Organic Molecules and Crystals V1

Nonlinear Optical Properties of Organic Molecules and Crystals V1
Author: D.S. Chemla
Publisher: Elsevier
Total Pages: 497
Release: 2012-12-02
Genre: Science
ISBN: 0323148158

Nonlinear Optical Properties of Organic Molecules and Crystals, Volume 1 discusses the nonlinear optical effects in organic molecules and crystals, providing a classical distinction between quadratic and cubic processes. This book begins with a general overview of the basic properties of organic matter, followed by a review on the benefits derived from quantum-chemistry-based models and growth and characterization of high quality, bulk organic crystals and waveguided structures. A case study focusing on a specific material, namely urea, which exemplifies a situation in which transparency in the UV region has been purposely traded for nonlinear efficiency is also deliberated. This text concludes with a description of a type of trade-off between the unpredictable orientation of molecules in crystalline media, polarity of liquid-crystalline structures, and dominant electronic contribution to the electro-optic effect. This publication is beneficial to solid-state physicists and chemists concerned with nonlinear optical properties of organic molecules and crystals.

Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials

Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials
Author: Carl W. Dirk
Publisher: Routledge
Total Pages: 914
Release: 2018-05-11
Genre: Science
ISBN: 135146180X

""Furnishes table of nonlinear optical properties of organic substances as well as experimental procedures for measuring the nonlinearity of the elements tabulated, including composite materials-offering support for scientists and engineers involved in characterizing, optimizing, and producing materials for manufacturing optical devices.

The Theory and Practice of Scintillation Counting

The Theory and Practice of Scintillation Counting
Author: J. B. Birks
Publisher: Elsevier
Total Pages: 685
Release: 2013-10-22
Genre: Technology & Engineering
ISBN: 1483156060

The Theory and Practice of Scintillation Counting is a comprehensive account of the theory and practice of scintillation counting. This text covers the study of the scintillation process, which is concerned with the interactions of radiation and matter; the design of the scintillation counter; and the wide range of applications of scintillation counters in pure and applied science. The book is easy to read despite the complex nature of the subject it attempts to discuss. It is organized such that the first five chapters illustrate the fundamental concepts of scintillation counting. Chapters 6 to 10 detail the properties and applications of organic scintillators, while the next four chapters discuss inorganic scintillators. The last two chapters provide a review of some outstanding problems and a postscript. Nuclear physicists, radiation technologists, and postgraduate students of nuclear physics will find the book a good reference material.

Properties Of Single Organic Molecules On Crystal Surfaces

Properties Of Single Organic Molecules On Crystal Surfaces
Author: Peter Grutter
Publisher: World Scientific
Total Pages: 443
Release: 2006-05-03
Genre: Science
ISBN: 1908979992

Within nanoscience, an emerging discipline is the study of the physics and chemistry of single molecules. Molecules may be considered as the ultimate building blocks, and are therefore interesting for the development of molecular devices and for surface functionalization. Thus, it is interesting to study their properties when adsorbed on a suitable substrate such as a solid or crystal surface, and also for their potential applications in nano- or molecular-electronics and nanosensing. Investigations have been made possible by the advent of high resolution surface imaging and characterization techniques, commonly referred to as Scanning Probe Microscopes.This book focuses on the fascinating properties of the single molecules, and the difference between single molecules and ensembles of molecules is emphasized. As the first book intended for graduate courses in the field, after each chapter, students should be able to answer the question: “What physical or chemical properties do you learn from a single molecule in this particular context?” Contributed by experts across the disciplines, the book provides useful reference material for specialized practitioners in surface science, nanoscience and nanoelectronics.