Optimizing Hadoop for MapReduce

Optimizing Hadoop for MapReduce
Author: Khaled Tannir
Publisher: Packt Publishing Ltd
Total Pages: 162
Release: 2014-02-21
Genre: Computers
ISBN: 1783285664

This book is an example-based tutorial that deals with Optimizing Hadoop for MapReduce job performance. If you are a Hadoop administrator, developer, MapReduce user, or beginner, this book is the best choice available if you wish to optimize your clusters and applications. Having prior knowledge of creating MapReduce applications is not necessary, but will help you better understand the concepts and snippets of MapReduce class template code.

Data-Intensive Text Processing with MapReduce

Data-Intensive Text Processing with MapReduce
Author: Jimmy Lin
Publisher: Springer Nature
Total Pages: 171
Release: 2022-05-31
Genre: Computers
ISBN: 3031021363

Our world is being revolutionized by data-driven methods: access to large amounts of data has generated new insights and opened exciting new opportunities in commerce, science, and computing applications. Processing the enormous quantities of data necessary for these advances requires large clusters, making distributed computing paradigms more crucial than ever. MapReduce is a programming model for expressing distributed computations on massive datasets and an execution framework for large-scale data processing on clusters of commodity servers. The programming model provides an easy-to-understand abstraction for designing scalable algorithms, while the execution framework transparently handles many system-level details, ranging from scheduling to synchronization to fault tolerance. This book focuses on MapReduce algorithm design, with an emphasis on text processing algorithms common in natural language processing, information retrieval, and machine learning. We introduce the notion of MapReduce design patterns, which represent general reusable solutions to commonly occurring problems across a variety of problem domains. This book not only intends to help the reader "think in MapReduce", but also discusses limitations of the programming model as well. Table of Contents: Introduction / MapReduce Basics / MapReduce Algorithm Design / Inverted Indexing for Text Retrieval / Graph Algorithms / EM Algorithms for Text Processing / Closing Remarks

Programming Elastic MapReduce

Programming Elastic MapReduce
Author: Kevin Schmidt
Publisher: O'Reilly Media
Total Pages: 155
Release: 2013
Genre: Computers
ISBN: 9781449363628

Although you don’t need a large computing infrastructure to process massive amounts of data with Apache Hadoop, it can still be difficult to get started. This practical guide shows you how to quickly launch data analysis projects in the cloud by using Amazon Elastic MapReduce (EMR), the hosted Hadoop framework in Amazon Web Services (AWS). Authors Kevin Schmidt and Christopher Phillips demonstrate best practices for using EMR and various AWS and Apache technologies by walking you through the construction of a sample MapReduce log analysis application. Using code samples and example configurations, you’ll learn how to assemble the building blocks necessary to solve your biggest data analysis problems. Get an overview of the AWS and Apache software tools used in large-scale data analysis Go through the process of executing a Job Flow with a simple log analyzer Discover useful MapReduce patterns for filtering and analyzing data sets Use Apache Hive and Pig instead of Java to build a MapReduce Job Flow Learn the basics for using Amazon EMR to run machine learning algorithms Develop a project cost model for using Amazon EMR and other AWS tools

MapReduce Design Patterns

MapReduce Design Patterns
Author: Donald Miner
Publisher: "O'Reilly Media, Inc."
Total Pages: 417
Release: 2012-11-21
Genre: Computers
ISBN: 1449341985

Until now, design patterns for the MapReduce framework have been scattered among various research papers, blogs, and books. This handy guide brings together a unique collection of valuable MapReduce patterns that will save you time and effort regardless of the domain, language, or development framework you’re using. Each pattern is explained in context, with pitfalls and caveats clearly identified to help you avoid common design mistakes when modeling your big data architecture. This book also provides a complete overview of MapReduce that explains its origins and implementations, and why design patterns are so important. All code examples are written for Hadoop. Summarization patterns: get a top-level view by summarizing and grouping data Filtering patterns: view data subsets such as records generated from one user Data organization patterns: reorganize data to work with other systems, or to make MapReduce analysis easier Join patterns: analyze different datasets together to discover interesting relationships Metapatterns: piece together several patterns to solve multi-stage problems, or to perform several analytics in the same job Input and output patterns: customize the way you use Hadoop to load or store data "A clear exposition of MapReduce programs for common data processing patterns—this book is indespensible for anyone using Hadoop." --Tom White, author of Hadoop: The Definitive Guide

Apache Hadoop YARN

Apache Hadoop YARN
Author: Arun C. Murthy
Publisher: Pearson Education
Total Pages: 336
Release: 2014
Genre: Computers
ISBN: 0321934504

"Apache Hadoop is helping drive the Big Data revolution. Now, its data processing has been completely overhauled: Apache Hadoop YARN provides resource management at data center scale and easier ways to create distributed applications that process petabytes of data. And now in Apache HadoopTM YARN, two Hadoop technical leaders show you how to develop new applications and adapt existing code to fully leverage these revolutionary advances." -- From the Amazon

Hadoop Operations

Hadoop Operations
Author: Eric Sammer
Publisher: "O'Reilly Media, Inc."
Total Pages: 298
Release: 2012-09-26
Genre: Computers
ISBN: 144932729X

If you’ve been asked to maintain large and complex Hadoop clusters, this book is a must. Demand for operations-specific material has skyrocketed now that Hadoop is becoming the de facto standard for truly large-scale data processing in the data center. Eric Sammer, Principal Solution Architect at Cloudera, shows you the particulars of running Hadoop in production, from planning, installing, and configuring the system to providing ongoing maintenance. Rather than run through all possible scenarios, this pragmatic operations guide calls out what works, as demonstrated in critical deployments. Get a high-level overview of HDFS and MapReduce: why they exist and how they work Plan a Hadoop deployment, from hardware and OS selection to network requirements Learn setup and configuration details with a list of critical properties Manage resources by sharing a cluster across multiple groups Get a runbook of the most common cluster maintenance tasks Monitor Hadoop clusters—and learn troubleshooting with the help of real-world war stories Use basic tools and techniques to handle backup and catastrophic failure

Big Data Benchmarks, Performance Optimization, and Emerging Hardware

Big Data Benchmarks, Performance Optimization, and Emerging Hardware
Author: Jianfeng Zhan
Publisher: Springer
Total Pages: 227
Release: 2014-11-10
Genre: Computers
ISBN: 3319130218

This book constitutes the thoroughly revised selected papers of the 4th and 5th workshops on Big Data Benchmarks, Performance Optimization, and Emerging Hardware, BPOE 4 and BPOE 5, held respectively in Salt Lake City, in March 2014, and in Hangzhou, in September 2014. The 16 papers presented were carefully reviewed and selected from 30 submissions. Both workshops focus on architecture and system support for big data systems, such as benchmarking; workload characterization; performance optimization and evaluation; emerging hardware.

Hadoop in Practice

Hadoop in Practice
Author: Alex Holmes
Publisher: Manning Publications
Total Pages: 512
Release: 2014-10-12
Genre: Computers
ISBN: 9781617292224

Summary Hadoop in Practice, Second Edition provides over 100 tested, instantly useful techniques that will help you conquer big data, using Hadoop. This revised new edition covers changes and new features in the Hadoop core architecture, including MapReduce 2. Brand new chapters cover YARN and integrating Kafka, Impala, and Spark SQL with Hadoop. You'll also get new and updated techniques for Flume, Sqoop, and Mahout, all of which have seen major new versions recently. In short, this is the most practical, up-to-date coverage of Hadoop available anywhere. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book It's always a good time to upgrade your Hadoop skills! Hadoop in Practice, Second Edition provides a collection of 104 tested, instantly useful techniques for analyzing real-time streams, moving data securely, machine learning, managing large-scale clusters, and taming big data using Hadoop. This completely revised edition covers changes and new features in Hadoop core, including MapReduce 2 and YARN. You'll pick up hands-on best practices for integrating Spark, Kafka, and Impala with Hadoop, and get new and updated techniques for the latest versions of Flume, Sqoop, and Mahout. In short, this is the most practical, up-to-date coverage of Hadoop available. Readers need to know a programming language like Java and have basic familiarity with Hadoop. What's Inside Thoroughly updated for Hadoop 2 How to write YARN applications Integrate real-time technologies like Storm, Impala, and Spark Predictive analytics using Mahout and RR Readers need to know a programming language like Java and have basic familiarity with Hadoop. About the Author Alex Holmes works on tough big-data problems. He is a software engineer, author, speaker, and blogger specializing in large-scale Hadoop projects. Table of Contents PART 1 BACKGROUND AND FUNDAMENTALS Hadoop in a heartbeat Introduction to YARN PART 2 DATA LOGISTICS Data serialization—working with text and beyond Organizing and optimizing data in HDFS Moving data into and out of Hadoop PART 3 BIG DATA PATTERNS Applying MapReduce patterns to big data Utilizing data structures and algorithms at scale Tuning, debugging, and testing PART 4 BEYOND MAPREDUCE SQL on Hadoop Writing a YARN application

Benchmarking, Measuring, and Optimizing

Benchmarking, Measuring, and Optimizing
Author: Wanling Gao
Publisher: Springer Nature
Total Pages: 371
Release: 2020-06-09
Genre: Computers
ISBN: 3030495566

This book constitutes the refereed proceedings of the Second International Symposium on Benchmarking, Measuring, and Optimization, Bench 2019, held in Denver, CO, USA, in November 2019. The 20 full papers and 11 short papers presented were carefully reviewed and selected from 79 submissions. The papers are organized in topical sections named: Best Paper Session; AI Challenges on Cambircon using AIBenc; AI Challenges on RISC-V using AIBench; AI Challenges on X86 using AIBench; AI Challenges on 3D Face Recognition using AIBench; Benchmark; AI and Edge; Big Data; Datacenter; Performance Analysis; Scientific Computing.

Hadoop: The Definitive Guide

Hadoop: The Definitive Guide
Author: Tom White
Publisher: "O'Reilly Media, Inc."
Total Pages: 687
Release: 2012-05-10
Genre: Computers
ISBN: 1449338771

Ready to unlock the power of your data? With this comprehensive guide, you’ll learn how to build and maintain reliable, scalable, distributed systems with Apache Hadoop. This book is ideal for programmers looking to analyze datasets of any size, and for administrators who want to set up and run Hadoop clusters. You’ll find illuminating case studies that demonstrate how Hadoop is used to solve specific problems. This third edition covers recent changes to Hadoop, including material on the new MapReduce API, as well as MapReduce 2 and its more flexible execution model (YARN). Store large datasets with the Hadoop Distributed File System (HDFS) Run distributed computations with MapReduce Use Hadoop’s data and I/O building blocks for compression, data integrity, serialization (including Avro), and persistence Discover common pitfalls and advanced features for writing real-world MapReduce programs Design, build, and administer a dedicated Hadoop cluster—or run Hadoop in the cloud Load data from relational databases into HDFS, using Sqoop Perform large-scale data processing with the Pig query language Analyze datasets with Hive, Hadoop’s data warehousing system Take advantage of HBase for structured and semi-structured data, and ZooKeeper for building distributed systems