Optimization of Lifting Re-entry Vehicles

Optimization of Lifting Re-entry Vehicles
Author: Wilbur Leason Hankey
Publisher:
Total Pages: 98
Release: 1963
Genre: Drag (Aerodynamics)
ISBN:

Aerodynamic lift is used during re-entry to provide range maneuverability so that a precise site can be selected and a horizontal landing capability can be provided. Maximum maneuverability may be achieved by modulating the hypersonic lift-to drag ratio (L/D). In this study the lifting re entry configuration was optimized to maximize hypersonic L/D within the heating, stability, and landing constraints. Eleven pertinent constraint equations were formulated, and numerical calcula tions of the complete aerodynamic characteristics and configurational geometry were determined. The IBM 7090 computer was used to solve the 11 constraint equations through an iteration tech nique and to perform the maximization process. Optimum configurational geometries were evaluated for three wing loadings at vehicle weights of 10,000 and 100,000 pounds. Results show that higher L/D values can be achieved with low aspect ratio, low wing loadings, and large scale vehi cles. The complete geometry for one of the typical optimums is shown as an example.

Optimal Trajectories in Atmospheric Flight

Optimal Trajectories in Atmospheric Flight
Author: Nguyen Vinh
Publisher: Elsevier
Total Pages: 421
Release: 2012-12-02
Genre: Technology & Engineering
ISBN: 0444601457

Optimal Trajectories in Atmospheric Flight deals with the optimization of trajectories in atmospheric flight. The book begins with a simple treatment of functional optimization followed by a discussion of switching theory. It then presents the derivation of the general equations of motion along with the basic knowledge in aerodynamics and propulsion necessary for the analysis of atmospheric flight trajectories. It goes on to the study of optimal trajectories by providing the general properties of the optimal aerodynamic controls and the integrals of motion. This is followed by discussions of high subsonic and supersonic flight, and approximation techniques to reduce the order of the problem for a fast computation of the optimal trajectory. The final chapters present analyses of optimal reentry trajectories and orbital maneuvers. This book is intended as a reference text for scientists and engineers wanting to get into the subject of optimal trajectories in atmospheric flight. If used for teaching purposes, the book is written in a self-contained way so that a selective use of the material is at the discretion of the lecturer. The first 11 chapters are sufficient for a one-semester course with emphasis on optimal maneuvers of high performance aircraft.

Fireworks Algorithm

Fireworks Algorithm
Author: Ying Tan
Publisher: Springer
Total Pages: 344
Release: 2015-10-11
Genre: Computers
ISBN: 3662463539

This book is devoted to the state-of-the-art in all aspects of fireworks algorithm (FWA), with particular emphasis on the efficient improved versions of FWA. It describes the most substantial theoretical analysis including basic principle and implementation of FWA and modeling and theoretical analysis of FWA. It covers exhaustively the key recent significant research into the improvements of FWA so far. In addition, the book describes a few advanced topics in the research of FWA, including multi-objective optimization (MOO), discrete FWA (DFWA) for combinatorial optimization, and GPU-based FWA for parallel implementation. In sequels, several successful applications of FWA on non-negative matrix factorization (NMF), text clustering, pattern recognition, and seismic inversion problem, and swarm robotics, are illustrated in details, which might shed new light on more real-world applications in future. Addressing a multidisciplinary topic, it will appeal to researchers and professionals in the areas of metahuristics, swarm intelligence, evolutionary computation, complex optimization solving, etc.

Re-Entry and Vehicle Design

Re-Entry and Vehicle Design
Author: Donald P. Legalley
Publisher: Academic Press
Total Pages: 433
Release: 2014-05-12
Genre: Technology & Engineering
ISBN: 1483270823

Ballistic Missile and Space Technology, Volume IV: Re-Entry and Vehicle Design focuses on the advancements of processes, methodologies, and technologies involved in re-entry and vehicle design, including hypersonics, material structures, propulsion, and communications. The selection first offers information on the pyrolysis of plastics in a high vacuum arc image furnace and aerothermodynamic feasibility of graphite for hypersonic glide vehicles. Discussions focus on aerothermochemical behavior of graphite, transient heat conduction, equilibrium glide trajectory, and apparatus and pyrolysis procedure. The text then takes a look at an engineering analysis of the weights of ablating systems for manned reentry vehicles and trajectories of lifting bodies entering planetary atmospheres at shallow angles. The manuscript ponders on propulsive control of atmospheric entry lifting trajectories, re-entry engineering mechanics, and rocket casing behavior predicted by laboratory tests. Topics include description of testing program, full-scale casing results, camera design, theoretical correlation, approximate thrust vector optimization, and propellant weight estimation. The selection is a dependable reference for astronauts and researchers interested in re-entry and vehicle design.

Atmospheric Re-Entry Vehicle Mechanics

Atmospheric Re-Entry Vehicle Mechanics
Author: Patrick Gallais
Publisher: Springer Science & Business Media
Total Pages: 365
Release: 2007-09-23
Genre: Technology & Engineering
ISBN: 3540736476

Based on a long engineering experience, this book offers a comprehensive and state-of-the-art analysis of aerodynamic and flight mechanic entry topics. This updated edition had new chapters on Re-entry on Mars mission, flight quality, rarefied aerodynamics and re-entry accuracy. In addition, it provides a large set of application exercises and solutions.

Handbook of Space Technology

Handbook of Space Technology
Author: Wilfried Ley
Publisher: John Wiley & Sons
Total Pages: 908
Release: 2009-03-18
Genre: Technology & Engineering
ISBN: 0470742410

Twenty years since the first edition was published in the German language, and just over fifty years since the launch of the Earth’s first ever artificial satellite Sputnik 1, this third edition of the Handbook of Space Technology presents in fully integrated colour a detailed insight into the fascinating world of space for the first time in the English language. Authored by over 70 leading experts from universities, research institutions and the space industry, this comprehensive handbook describes the processes and methodologies behind the development, construction, operation and utilization of space systems, presenting the profound changes that have occurred in recent years in the engineering, materials, processes and even politics associated with space technologies and utilization. The individual chapters are self-contained, enabling the reader to gain a quick and reliable overview of a selected field; an extensive reference and keyword list helps those who wish to deepen their understanding of individual topics. Featuring superb, full colour illustrations and photography throughout, this interdisciplinary reference contains practical, hands-on engineering and planning information that will be invaluable to those on a career path within space technology, or simply for those of us who’d like to know more about this fascinating industry. Main section headings include: Introduction (historical overview, space missions) Fundamentals (orbital mechanics, aerothermodynamics/ reentry, space debris) Launch Vehicles (staged technologies, propulsion systems, launch infrastructure) Space Vehicle Subsystems (structure, energy supply, thermal controls, attitude control, communication) Aspects of Human Flight (man in space, life support systems, rendezvous and docking) Mission Operations (satellite operation, control center, ground station network) Utilization of Space (Earth observation, communication navigation, space astronomy, material sciences, space medicine, robotics) Configuration and Design of a Space Vehicle (mission concept, system concept, environmental simulation, system design, Galileo satellites) Management of Space Missions (project management, quality management, cost management, space law)

Hypersonic Vehicles

Hypersonic Vehicles
Author: Giuseppe Pezzella
Publisher: BoD – Books on Demand
Total Pages: 150
Release: 2019-10-02
Genre: Science
ISBN: 1839622695

In the aviation field there is great interest in high-speed vehicle design. Hypersonic vehicles represent the next frontier of passenger transportation to and from space. However, several design issues must be addressed, including vehicle aerodynamics and aerothermodynamics, aeroshape design optimization, aerodynamic heating, boundary layer transition, and so on. This book contains valuable contributions focusing on hypervelocity aircraft design. Topics covered include hypersonic aircraft aerodynamic and aerothermodynamic design, especially aeroshape design optimization, computational fluid dynamics, and scramjet propulsion. The book also discusses high-speed flow issues and the challenges to achieving the dream of affordable hypersonic travel. It is hoped that the information contained herein will allow for the development of safe and efficient hypersonic vehicles.

Basics of Aerothermodynamics

Basics of Aerothermodynamics
Author: Ernst Heinrich Hirschel
Publisher: Springer Science & Business Media
Total Pages: 419
Release: 2006-01-16
Genre: Technology & Engineering
ISBN: 3540265198

The last two decades have brought two important developments for aeroth- modynamics. One is that airbreathing hypersonic flight became the topic of technology programmes and extended system studies. The other is the emergence and maturing of the discrete numerical methods of aerodyn- ics/aerothermodynamics complementary to the ground-simulation facilities, with the parallel enormous growth of computer power. Airbreathing hypersonic flight vehicles are, in contrast to aeroassisted re-entry vehicles, drag sensitive. They have, further, highly integrated lift and propulsion systems. This means that viscous eflFects, like boundary-layer development, laminar-turbulent transition, to a certain degree also strong interaction phenomena, are much more important for such vehicles than for re-entry vehicles. This holds also for the thermal state of the surface and thermal surface effects, concerning viscous and thermo-chemical phenomena (more important for re-entry vehicles) at and near the wall. The discrete numerical methods of aerodynamics/aerothermodynamics permit now - what was twenty years ago not imaginable - the simulation of high speed flows past real flight vehicle configurations with thermo-chemical and viscous effects, the description of the latter being still handicapped by in sufficient flow-physics models. The benefits of numerical simulation for flight vehicle design are enormous: much improved aerodynamic shape definition and optimization, provision of accurate and reliable aerodynamic data, and highly accurate determination of thermal and mechanical loads. Truly mul- disciplinary design and optimization methods regarding the layout of thermal protection systems, all kinds of aero-servoelasticity problems of the airframe, et cetera, begin now to emerge.

Conceptual Shape Optimization of Entry Vehicles

Conceptual Shape Optimization of Entry Vehicles
Author: Dominic Dirkx
Publisher: Springer
Total Pages: 284
Release: 2016-12-09
Genre: Technology & Engineering
ISBN: 3319460552

This book covers the parameterization of entry capsules, including Apollo capsules and planetary probes, and winged entry vehicles such as the Space Shuttle and lifting bodies. The aerodynamic modelling is based on a variety of panel methods that take shadowing into account, and it has been validated with flight and wind tunnel data of Apollo and the Space Shuttle. The shape optimization is combined with constrained trajectory analysis, and the multi-objective approach provides the engineer with a Pareto front of optimal shapes. The method detailed in Conceptual Shape Optimization of Entry Vehicles is straightforward, and the output gives the engineer insight in the effect of shape variations on trajectory performance. All applied models and algorithms used are explained in detail, allowing for reconstructing the design tool to the researcher’s requirements. Conceptual Shape Optimization of Entry Vehicles will be of interest to both researchers and graduate students in the field of aerospace engineering, and to practitioners within the aerospace industry.