Optimization Based Control Design Techniques For Distributed Parameter Systems
Download Optimization Based Control Design Techniques For Distributed Parameter Systems full books in PDF, epub, and Kindle. Read online free Optimization Based Control Design Techniques For Distributed Parameter Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Karl Johan Åström |
Publisher | : Princeton University Press |
Total Pages | : |
Release | : 2021-02-02 |
Genre | : Technology & Engineering |
ISBN | : 069121347X |
The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory
Author | : Alfred C. Robinson |
Publisher | : |
Total Pages | : 54 |
Release | : 1969 |
Genre | : Control theory |
ISBN | : |
The report is a survey of theoretical and computational methods in the field of optimal control of distributed parameter systems. This includes systems described by integral equations and partial differential equations. The various studies which have been done are grouped according to the method employed. A number of applications and potential applications of these methods are discussed, and certain deficiencies in the current state of knowledge are noted. Difficulties and opportunities in practical applications are discussed, and suggestions are offered for directions of research to render the results more readily usable. A list of references is included numbering more than 250 items: papers, report, and books.
Author | : Lei Guo |
Publisher | : Springer |
Total Pages | : 0 |
Release | : 2012-07-01 |
Genre | : Technology & Engineering |
ISBN | : 9781447125594 |
A recent development in SDC-related problems is the establishment of intelligent SDC models and the intensive use of LMI-based convex optimization methods. Within this theoretical framework, control parameter determination can be designed and stability and robustness of closed-loop systems can be analyzed. This book describes the new framework of SDC system design and provides a comprehensive description of the modelling of controller design tools and their real-time implementation. It starts with a review of current research on SDC and moves on to some basic techniques for modelling and controller design of SDC systems. This is followed by a description of controller design for fixed-control-structure SDC systems, PDF control for general input- and output-represented systems, filtering designs, and fault detection and diagnosis (FDD) for SDC systems. Many new LMI techniques being developed for SDC systems are shown to have independent theoretical significance for robust control and FDD problems.
Author | : |
Publisher | : |
Total Pages | : 702 |
Release | : 1995 |
Genre | : Aeronautics |
ISBN | : |
Author | : Antonella Ferrara |
Publisher | : SIAM |
Total Pages | : 302 |
Release | : 2019-07-01 |
Genre | : Mathematics |
ISBN | : 1611975840 |
A compendium of the authors recently published results, this book discusses sliding mode control of uncertain nonlinear systems, with a particular emphasis on advanced and optimization based algorithms. The authors survey classical sliding mode control theory and introduce four new methods of advanced sliding mode control. They analyze classical theory and advanced algorithms, with numerical results complementing the theoretical treatment. Case studies examine applications of the algorithms to complex robotics and power grid problems. Advanced and Optimization Based Sliding Mode Control: Theory and Applications is the first book to systematize the theory of optimization based higher order sliding mode control and illustrate advanced algorithms and their applications to real problems. It presents systematic treatment of event-triggered and model based event-triggered sliding mode control schemes, including schemes in combination with model predictive control, and presents adaptive algorithms as well as algorithms capable of dealing with state and input constraints. Additionally, the book includes simulations and experimental results obtained by applying the presented control strategies to real complex systems. This book is suitable for students and researchers interested in control theory. It will also be attractive to practitioners interested in implementing the illustrated strategies. It is accessible to anyone with a basic knowledge of control engineering, process physics, and applied mathematics.
Author | : Agostino Martinelli |
Publisher | : SIAM |
Total Pages | : 277 |
Release | : 2020-08-24 |
Genre | : Mathematics |
ISBN | : 1611976251 |
This book is about nonlinear observability. It provides a modern theory of observability based on a new paradigm borrowed from theoretical physics and the mathematical foundation of that paradigm. In the case of observability, this framework takes into account the group of invariance that is inherent to the concept of observability, allowing the reader to reach an intuitive derivation of significant results in the literature of control theory. The book provides a complete theory of observability and, consequently, the analytical solution of some open problems in control theory. Notably, it presents the first general analytic solution of the nonlinear unknown input observability (nonlinear UIO), a very complex open problem studied in the 1960s. Based on this solution, the book provides examples with important applications for neuroscience, including a deep study of the integration of multiple sensory cues from the visual and vestibular systems for self-motion perception. Observability: A New Theory Based on the Group of Invariance is the only book focused solely on observability. It provides readers with many applications, mostly in robotics and autonomous navigation, as well as complex examples in the framework of vision-aided inertial navigation for aerial vehicles. For these applications, it also includes all the derivations needed to separate the observable part of the system from the unobservable, an analysis with practical importance for obtaining the basic equations for implementing any estimation scheme or for achieving a closed-form solution to the problem. This book is intended for researchers in robotics and automation, both in academia and in industry. Researchers in other engineering disciplines, such as information theory and mechanics, will also find the book useful.
Author | : André Garon |
Publisher | : SIAM |
Total Pages | : 288 |
Release | : 2022-03-25 |
Genre | : Mathematics |
ISBN | : 1611976952 |
This book introduces transfinite interpolation as a generalization of interpolation of data prescribed at a finite number of points to data prescribed on a geometrically structured set, such as a piece of curve, surface, or submanifold. The time-independent theory is readily extended to a moving/deforming data set whose dynamics is specified in a Eulerian or Lagrangian framework. The resulting innovative tools cover a very broad spectrum of applications in fluid mechanics, geometric optimization, and imaging. The authors chose to focus on the dynamical mesh updating in fluid mechanics and the construction of velocity fields from the boundary expression of the shape derivative. Transfinite Interpolations and Eulerian/Lagrangian Dynamics is a self-contained graduate-level text that integrates theory, applications, numerical approximations, and computational techniques. It applies transfinite interpolation methods to finite element mesh adaptation and ALE fluid-structure interaction. Specialists in applied mathematics, physics, mechanics, computational sciences, imaging sciences, and engineering will find this book of interest.
Author | : |
Publisher | : |
Total Pages | : 688 |
Release | : 1983 |
Genre | : Large space structures (Astronautics) |
ISBN | : |
Author | : |
Publisher | : |
Total Pages | : 528 |
Release | : 1993 |
Genre | : Mechanics, Applied |
ISBN | : |
Author | : Kaushik Das Sharma |
Publisher | : Springer |
Total Pages | : 310 |
Release | : 2018-08-28 |
Genre | : Technology & Engineering |
ISBN | : 9811312982 |
This book discusses systematic designs of stable adaptive fuzzy logic controllers employing hybridizations of Lyapunov strategy-based approaches/H∞ theory-based approaches and contemporary stochastic optimization techniques. The text demonstrates how candidate stochastic optimization techniques like Particle swarm optimization (PSO), harmony search (HS) algorithms, covariance matrix adaptation (CMA) etc. can be utilized in conjunction with the Lyapunov theory/H∞ theory to develop such hybrid control strategies. The goal of developing a series of such hybridization processes is to combine the strengths of both Lyapunov theory/H∞ theory-based local search methods and stochastic optimization-based global search methods, so as to attain superior control algorithms that can simultaneously achieve desired asymptotic performance and provide improved transient responses. The book also demonstrates how these intelligent adaptive control algorithms can be effectively utilized in real-life applications such as in temperature control for air heater systems with transportation delay, vision-based navigation of mobile robots, intelligent control of robot manipulators etc.