Optimal Control And Stochastic Estimation Theory And Application
Download Optimal Control And Stochastic Estimation Theory And Application full books in PDF, epub, and Kindle. Read online free Optimal Control And Stochastic Estimation Theory And Application ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Robert F. Stengel |
Publisher | : Courier Corporation |
Total Pages | : 674 |
Release | : 2012-10-16 |
Genre | : Mathematics |
ISBN | : 0486134814 |
Graduate-level text provides introduction to optimal control theory for stochastic systems, emphasizing application of basic concepts to real problems. "Invaluable as a reference for those already familiar with the subject." — Automatica.
Author | : Frank L. Lewis |
Publisher | : CRC Press |
Total Pages | : 546 |
Release | : 2017-12-19 |
Genre | : Technology & Engineering |
ISBN | : 1420008293 |
More than a decade ago, world-renowned control systems authority Frank L. Lewis introduced what would become a standard textbook on estimation, under the title Optimal Estimation, used in top universities throughout the world. The time has come for a new edition of this classic text, and Lewis enlisted the aid of two accomplished experts to bring the book completely up to date with the estimation methods driving today's high-performance systems. A Classic Revisited Optimal and Robust Estimation: With an Introduction to Stochastic Control Theory, Second Edition reflects new developments in estimation theory and design techniques. As the title suggests, the major feature of this edition is the inclusion of robust methods. Three new chapters cover the robust Kalman filter, H-infinity filtering, and H-infinity filtering of discrete-time systems. Modern Tools for Tomorrow's Engineers This text overflows with examples that highlight practical applications of the theory and concepts. Design algorithms appear conveniently in tables, allowing students quick reference, easy implementation into software, and intuitive comparisons for selecting the best algorithm for a given application. In addition, downloadable MATLAB® code allows students to gain hands-on experience with industry-standard software tools for a wide variety of applications. This cutting-edge and highly interactive text makes teaching, and learning, estimation methods easier and more modern than ever.
Author | : Michael J. Grimble |
Publisher | : John Wiley & Sons |
Total Pages | : 590 |
Release | : 1988 |
Genre | : Mathematics |
ISBN | : |
Two volumes, which together present a modern and comprehensive overview of the field of optimal control and stochastic estimation.
Author | : Jason L. Speyer |
Publisher | : SIAM |
Total Pages | : 391 |
Release | : 2008-11-06 |
Genre | : Mathematics |
ISBN | : 0898716551 |
The authors provide a comprehensive treatment of stochastic systems from the foundations of probability to stochastic optimal control. The book covers discrete- and continuous-time stochastic dynamic systems leading to the derivation of the Kalman filter, its properties, and its relation to the frequency domain Wiener filter aswell as the dynamic programming derivation of the linear quadratic Gaussian (LQG) and the linear exponential Gaussian (LEG) controllers and their relation to HÝsubscript 2¨ and HÝsubscript Ýinfinity¨¨ controllers and system robustness. This book is suitable for first-year graduate students in electrical, mechanical, chemical, and aerospace engineering specializing in systems and control. Students in computer science, economics, and possibly business will also find it useful.
Author | : John L. Crassidis |
Publisher | : CRC Press |
Total Pages | : 606 |
Release | : 2004-04-27 |
Genre | : Mathematics |
ISBN | : 1135439273 |
Most newcomers to the field of linear stochastic estimation go through a difficult process in understanding and applying the theory.This book minimizes the process while introducing the fundamentals of optimal estimation. Optimal Estimation of Dynamic Systems explores topics that are important in the field of control where the signals received are used to determine highly sensitive processes such as the flight path of a plane, the orbit of a space vehicle, or the control of a machine. The authors use dynamic models from mechanical and aerospace engineering to provide immediate results of estimation concepts with a minimal reliance on mathematical skills. The book documents the development of the central concepts and methods of optimal estimation theory in a manner accessible to engineering students, applied mathematicians, and practicing engineers. It includes rigorous theoretial derivations and a significant amount of qualitiative discussion and judgements. It also presents prototype algorithms, giving detail and discussion to stimulate development of efficient computer programs and intelligent use of them. This book illustrates the application of optimal estimation methods to problems with varying degrees of analytical and numercial difficulty. It compares various approaches to help develop a feel for the absolute and relative utility of different methods, and provides many applications in the fields of aerospace, mechanical, and electrical engineering.
Author | : Jon H. Davis |
Publisher | : Springer Science & Business Media |
Total Pages | : 434 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461200717 |
"This volume is a textbook on linear control systems with an emphasis on stochastic optimal control with solution methods using spectral factorization in line with the original approach of N. Wiener. Continuous-time and discrete-time versions are presented in parallel.... Two appendices introduce functional analytic concepts and probability theory, and there are 77 references and an index. The chapters (except for the last two) end with problems.... [T]he book presents in a clear way important concepts of control theory and can be used for teaching." —Zentralblatt Math "This is a textbook intended for use in courses on linear control and filtering and estimation on (advanced) levels. Its major purpose is an introduction to both deterministic and stochastic control and estimation. Topics are treated in both continuous time and discrete time versions.... Each chapter involves problems and exercises, and the book is supplemented by appendices, where fundamentals on Hilbert and Banach spaces, operator theory, and measure theoretic probability may be found. The book will be very useful for students, but also for a variety of specialists interested in deterministic and stochastic control and filtering." —Applications of Mathematics "The strength of the book under review lies in the choice of specialized topics it contains, which may not be found in this form elsewhere. Also, the first half would make a good standard course in linear control." —Journal of the Indian Institute of Science
Author | : George M. Siouris |
Publisher | : Wiley-Interscience |
Total Pages | : 442 |
Release | : 1996-02-15 |
Genre | : Science |
ISBN | : |
In its highly organized overview of all areas, the book examines the design of modern optimal controllers requiring the selection of a performance criterion, demonstrates optimization of linear systems with bounded controls and limited control effort, and considers nonlinearities and their effect on various types of signals.
Author | : P. R. Kumar |
Publisher | : SIAM |
Total Pages | : 371 |
Release | : 2015-12-15 |
Genre | : Mathematics |
ISBN | : 1611974259 |
Since its origins in the 1940s, the subject of decision making under uncertainty has grown into a diversified area with application in several branches of engineering and in those areas of the social sciences concerned with policy analysis and prescription. These approaches required a computing capacity too expensive for the time, until the ability to collect and process huge quantities of data engendered an explosion of work in the area. This book provides succinct and rigorous treatment of the foundations of stochastic control; a unified approach to filtering, estimation, prediction, and stochastic and adaptive control; and the conceptual framework necessary to understand current trends in stochastic control, data mining, machine learning, and robotics.
Author | : Donald E. Kirk |
Publisher | : Courier Corporation |
Total Pages | : 466 |
Release | : 2012-04-26 |
Genre | : Technology & Engineering |
ISBN | : 0486135071 |
Upper-level undergraduate text introduces aspects of optimal control theory: dynamic programming, Pontryagin's minimum principle, and numerical techniques for trajectory optimization. Numerous figures, tables. Solution guide available upon request. 1970 edition.
Author | : Alain Bensoussan |
Publisher | : Springer |
Total Pages | : 552 |
Release | : 2018-05-23 |
Genre | : Mathematics |
ISBN | : 3319754564 |
This book provides a comprehensive presentation of classical and advanced topics in estimation and control of dynamical systems with an emphasis on stochastic control. Many aspects which are not easily found in a single text are provided, such as connections between control theory and mathematical finance, as well as differential games. The book is self-contained and prioritizes concepts rather than full rigor, targeting scientists who want to use control theory in their research in applied mathematics, engineering, economics, and management science. Examples and exercises are included throughout, which will be useful for PhD courses and graduate courses in general. Dr. Alain Bensoussan is Lars Magnus Ericsson Chair at UT Dallas and Director of the International Center for Decision and Risk Analysis which develops risk management research as it pertains to large-investment industrial projects that involve new technologies, applications and markets. He is also Chair Professor at City University Hong Kong.