From MEMS to Bio-MEMS and Bio-NEMS

From MEMS to Bio-MEMS and Bio-NEMS
Author: Marc J. Madou
Publisher: CRC Press
Total Pages: 652
Release: 2011-06-13
Genre: Technology & Engineering
ISBN: 142005516X

From MEMS to Bio-MEMS and Bio-NEMS: Manufacturing Techniques and Applications details manufacturing techniques applicable to bionanotechnology. After reviewing MEMS techniques, materials, and modeling, the author covers nanofabrication, genetically engineered proteins, artificial cells, nanochemistry, and self-assembly. He also discusses scaling laws in MEMS and NEMS, actuators, fluidics, and power and brains in miniature devices. He concludes with coverage of various MEMS and NEMS applications. Fully illustrated in color, the text contains end-of-chapter problems, worked examples, extensive references for further reading, and an extensive glossary of terms. Details the Nanotechnology, Biology, and Manufacturing Techniques Applicable to Bionanotechnology Topics include: Nonlithography manufacturing techniques with lithography-based methods Nature as an engineering guide and contrasts top-down and bottom-up approaches Packaging, assembly, and self-assembly from ICs to DNA and biological cells Selected new MEMS and NEMS processes and materials, metrology techniques, and modeling Scaling laws, actuators, power generation, and the implementation of brains in miniaturizes devices Different strategies for making micromachines smarter The transition out of the laboratory and into the marketplace The third volume in Fundamentals of Microfabrication and Nanotechnology, Third Edition, Three-Volume Set, the book discusses top-down and bottom-up manufacturing methods and explains how to use nature as a guide. It provides a better understanding of how to match different manufacturing options with a given application that students can use to identify additional killer MEMS and NEMS applications. Other volumes in the set include: Solid-State Physics, Fluidics, and Analytical Techniques in Micro- and Nanotechnology Manufacturing Techniques for Microfabrication and Nanotechnology

MEMS and Microstructures in Aerospace Applications

MEMS and Microstructures in Aerospace Applications
Author: Robert Osiander
Publisher: CRC Press
Total Pages: 402
Release: 2018-10-03
Genre: Technology & Engineering
ISBN: 1420027743

The promise of MEMS for aerospace applications has been germinating for years, and current advances bring the field to the very cusp of fruition. Reliability is chief among the challenges limiting the deployment of MEMS technologies in space, as the requirement of zero failure during the mission is quite stringent for this burgeoning field. MEMS and Microstructures in Aerospace Applications provides all the necessary tools to overcome these obstacles and take MEMS from the lab bench to beyond the exosphere. The book begins with an overview of MEMS development and provides several demonstrations of past and current examples of MEMS in space. From this platform, the discussion builds to fabrication technologies; the effect of space environmental factors on MEMS devices; and micro technologies for space systems, instrumentation, communications, thermal control, guidance navigation and control, and propulsion. Subsequent chapters explore factors common to all of the described systems, such as MEMS packaging, handling and contamination control, material selection for specific applications, reliability practices for design and application, and assurance practices. Edited and contributed by an outstanding team of leading experts from industry, academia, and national laboratories, MEMS and Microstructures in Aerospace Applications illuminates the path toward qualifying and integrating MEMS devices and instruments into future space missions and developing innovative satellite systems.

MEMS Lorentz Force Magnetometers

MEMS Lorentz Force Magnetometers
Author: Cesare Buffa
Publisher: Springer
Total Pages: 139
Release: 2017-07-04
Genre: Technology & Engineering
ISBN: 3319594125

This book deals with compasses for consumer applications realized in MEMS technology, to support location-based and orientation-based services in addition to ‘traditional’ functionalities based on navigation. Navigation is becoming a must-have feature in portable devices and the presence of a compass also makes location-based augmented reality emerge, where a street map or a camera image could be overlaid with highly detailed information about what is in front of the user. To make these features possible both industries and scientific research focus on three axis magnetometers. The author describes a full path from specifications (driven by customers’ needs/desires) to prototype and preparing the way to industrialization and commercialization. The presentation includes an overview of all the major steps of this research and development process, highlighting critical points and potential pitfalls, as well as how to forecast or mitigate them. Coverage includes system design, specifications fulfillment, design strategy and project development methodology, in addition to traditional topics such as microelectronics design, sensor design, development of an experimental setup and characterization. The author uses a practical approach, including pragmatic guidelines and design choices, while maintaining focus on the final target, prototyping in the direction of industrialization and mass production.

Wireless MEMS Networks and Applications

Wireless MEMS Networks and Applications
Author: Deepak Uttamchandani
Publisher: Elsevier
Total Pages: 290
Release: 2016-08-30
Genre: Technology & Engineering
ISBN: 0081004508

Wireless MEMS Networks and Applications reviews key emerging applications of MEMS in wireless and mobile networks. This book covers the different types of wireless MEMS devices, also exploring MEMS in smartphones, tablets, and the MEMS used for energy harvesting. The book reviews the range of applications of wireless MEMS networks in manufacturing, infrastructure monitoring, environmental monitoring, space applications, agricultural monitoring for food safety, health applications, and systems for smart cities. - Focuses on the use of MEMS in the emerging area of wireless applications - Contains comprehensive coverage of the range of applications of MEMS for wireless networks - Presents an international range of expert contributors who identify key research in the field

Optical, Acoustic, Magnetic, and Mechanical Sensor Technologies

Optical, Acoustic, Magnetic, and Mechanical Sensor Technologies
Author: Krzysztof Iniewski
Publisher: CRC Press
Total Pages: 361
Release: 2017-12-19
Genre: Computers
ISBN: 1351832840

Light on physics and math, with a heavy focus on practical applications, Optical, Acoustic, Magnetic, and Mechanical Sensor Technologies discusses the developments necessary to realize the growth of truly integrated sensors for use in physical, biological, optical, and chemical sensing, as well as future micro- and nanotechnologies. Used to pick up sound, movement, and optical or magnetic signals, portable and lightweight sensors are perpetually in demand in consumer electronics, biomedical engineering, military applications, and a wide range of other sectors. However, despite extensive existing developments in computing and communications for integrated microsystems, we are only just now seeing real transformational changes in sensors, which are critical to conducting so many advanced, integrated tasks. This book is designed in two sections—Optical and Acoustic Sensors and Magnetic and Mechanical Sensors—that address the latest developments in sensors. The first part covers: Optical and acoustic sensors, particularly those based on polymer optical fibers Potential of integrated optical biosensors and silicon photonics Luminescent thermometry and solar cell analyses Description of research from United States Army Research Laboratory on sensing applications using photoacoustic spectroscopy Advances in the design of underwater acoustic modems The second discusses: Magnetic and mechanical sensors, starting with coverage of magnetic field scanning Some contributors’ personal accomplishments in combining MEMS and CMOS technologies for artificial microsystems used to sense airflow, temperature, and humidity MEMS-based micro hot-plate devices Vibration energy harvesting with piezoelectric MEMS Self-powered wireless sensing As sensors inevitably become omnipresent elements in most aspects of everyday life, this book assesses their massive potential in the development of interfacing applications for various areas of product design and sciences—including electronics, photonics, mechanics, chemistry, and biology, to name just a few.

Materials for Mechanical and Optical Microsystems: Volume 444

Materials for Mechanical and Optical Microsystems: Volume 444
Author: Michael L. Reed
Publisher:
Total Pages: 264
Release: 1997-03-30
Genre: Mathematics
ISBN:

A selection of 33 reviewed papers explore the materials aspects of microsystems, especially those involving mechanical, optical, and thermal components. The topics include technology for micro- assembling, selective electroless copper metallization of epoxy substrates, an improved auto-adhesion measurement method for micro-machines polysilicon beams, patterned sol-gel structures by micro-molding in capillaries, the experimental analysis of the process of anodic bonding using an evaporated glass layer, the effect of inorganic thin film material processing and properties on stress in silicon piezoresistive pressure sensors, and photoconductivity in vacuum-deposited films of silicon-based polymers. Annotation copyrighted by Book News, Inc., Portland, OR

High Sensitivity Magnetometers

High Sensitivity Magnetometers
Author: Asaf Grosz
Publisher: Springer
Total Pages: 576
Release: 2016-09-20
Genre: Technology & Engineering
ISBN: 3319340700

This book gathers, for the first time, an overview of nearly all of the magnetic sensors that exist today. The book is offering the readers a thorough and comprehensive knowledge from basics to state-of-the-art and is therefore suitable for both beginners and experts. From the more common and popular AMR magnetometers and up to the recently developed NV center magnetometers, each chapter is describing a specific type of sensor and providing all the information that is necessary to understand the magnetometer behavior including theoretical background, noise model, materials, electronics, design and fabrication techniques, etc.

Fundamentals of Microelectromechanical Systems (MEMS)

Fundamentals of Microelectromechanical Systems (MEMS)
Author: Eun Sok Kim
Publisher: McGraw Hill Professional
Total Pages: 415
Release: 2021-05-14
Genre: Technology & Engineering
ISBN: 1264257597

A complete guide to MEMS engineering, fabrication, and applications This comprehensive engineering guide shows, step by step, how to incorporate cutting-edge microelectromechanical (MEMS) technology to enable internet-of-things (IoT) and artificial intelligence (AI) functionality in your designs. Written by an experienced educator and microelectronics expert, Fundamentals of Microelectromechanical Systems (MEMS) clearly explains the latest technologies and methods. Real-world examples, illustrations, and in-depth questions and problems reinforce key topics throughout. Readers will also take a look at the future of MEMS in the workforce and explore MEMS research and development. Coverage includes: Basic microfabrication Micromachining Transduction principles RF and optical MEMS Mechanics and inertial sensors Thin film properties and SAW/BAW sensors Pressure sensors and microphones Piezoelectric films Material properties expressed as tensor Microfluidic systems and BioMEMS Power MEMS Electronic noises, interface circuits, and oscillators

Smart Sensors and MEMS

Smart Sensors and MEMS
Author: Sergey Y. Yurish
Publisher: Springer Science & Business Media
Total Pages: 489
Release: 2007-11-12
Genre: Technology & Engineering
ISBN: 1402029292

The book Smart Sensors and MEMS provides an unique collection of contributions on latest achievements in sensors area and technologies that have made by eleven internationally recognized leading experts from Czech Republic, Germany, Italy, Israel, Portugal, Switzerland, Ukraine and USA during the NATO Advanced Study Institute (ASI) in Povoa de Varzim, Portugal, from 8 to 19 September 2003. The aims of this volume are to disseminate wider and in-depth theoretical and practical knowledge about smart sensors and its applications, to create a clear consciousness about the effectiveness of MEMS technologies, advanced signal processing and conversion methods, to stimulate the theoretical and applied research in these areas, and promote the practical using of these techniques in the industry. With that in mind, a broad range of physical, chemical and biosensors design principles, technologies and applications were included in the book. It is a first attempt to describe in the same book different physical, chemical, biological sensors and MEMS technologies suitable for smart sensors creation. The book presents the state-of-the-art and gives an excellent opportunity to provide a systematic, in-depth treatment of the new and rapidly developing field of smart sensors and MEMS. The volume is an excellent guide for practicing engineers, researchers and students interested in this crucial aspect of actual smart sensor design.