Optical Properties Of Iii V Semiconductors
Download Optical Properties Of Iii V Semiconductors full books in PDF, epub, and Kindle. Read online free Optical Properties Of Iii V Semiconductors ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Sadao Adachi |
Publisher | : John Wiley & Sons |
Total Pages | : 342 |
Release | : 1992-11-10 |
Genre | : Science |
ISBN | : 9780471573296 |
The objective of this book is two-fold: to examine key properties of III-V compounds and to present diverse material parameters and constants of these semiconductors for a variety of basic research and device applications. Emphasis is placed on material properties not only of Inp but also of InAs, GaAs and GaP binaries.
Author | : Sadao Adachi |
Publisher | : IET |
Total Pages | : 354 |
Release | : 1993 |
Genre | : Science |
ISBN | : 9780852965580 |
The alloy system A1GaAs/GaAs is potentially of great importance for many high-speed electronics and optoelectronic devices, because the lattice parameter difference GaAs and A1GaAs is very small, which promises an insignificant concentration of undesirable interface states. Thanks to this prominent feature, a number of interesting properties and phenomena, such as high-mobility low-dimensional carrier gases, resonant tunnelling and fractional quantum Hall effect, have been found in the A1GaAs/GaAs heterostructure system. New devices, such as modulation-doped FETs, heterojunction bipolar transistors, resonant tunnelling transistors, quantum-well lasers, and other photonic and quantum-effect devices, have also been developed recently using this material system. These areas are recognized as not being the most interesting and active fields in semiconductor physics and device engineering.
Author | : Heinz Kalt |
Publisher | : Springer Science & Business Media |
Total Pages | : 209 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 3642582842 |
This monograph is concerned with the III-V bulk and low-dimensional semiconductors, with the emphasis on the implications of multi-valley bandstructures for the physical mechanisms essential for opto-electronic devices. The optical response of such semiconductor materials is determined by many-body effects such as screening, gap narrowing, Fermi-edge singularity, electron-hole plasma and liquid formation. Consequently, the discussion of these features reflects such interdependencies with the dynamics of excitons and carriers resulting from intervalley coupling.
Author | : Keh Yung Cheng |
Publisher | : Springer Nature |
Total Pages | : 537 |
Release | : 2020-11-08 |
Genre | : Technology & Engineering |
ISBN | : 3030519031 |
This textbook gives a complete and fundamental introduction to the properties of III-V compound semiconductor devices, highlighting the theoretical and practical aspects of their device physics. Beginning with an introduction to the basics of semiconductor physics, it presents an overview of the physics and preparation of compound semiconductor materials, as well as a detailed look at the electrical and optical properties of compound semiconductor heterostructures. The book concludes with chapters dedicated to a number of heterostructure electronic and photonic devices, including the high-electron-mobility transistor, the heterojunction bipolar transistor, lasers, unipolar photonic devices, and integrated optoelectronic devices. Featuring chapter-end problems, suggested references for further reading, as well as clear, didactic schematics accompanied by six information-rich appendices, this textbook is ideal for graduate students in the areas of semiconductor physics or electrical engineering. In addition, up-to-date results from published research make this textbook especially well-suited as a self-study and reference guide for engineers and researchers in related industries.
Author | : Sadao Adachi |
Publisher | : John Wiley & Sons |
Total Pages | : 422 |
Release | : 2009-03-12 |
Genre | : Technology & Engineering |
ISBN | : 9780470744390 |
The main purpose of this book is to provide a comprehensive treatment of the materials aspects of group-IV, III−V and II−VI semiconductor alloys used in various electronic and optoelectronic devices. The topics covered in this book include the structural, thermal, mechanical, lattice vibronic, electronic, optical and carrier transport properties of such semiconductor alloys. The book reviews not only commonly known alloys (SiGe, AlGaAs, GaInPAs, and ZnCdTe) but also new alloys, such as dilute-carbon alloys (CSiGe, CSiSn, etc.), III−N alloys, dilute-nitride alloys (GaNAs and GaInNAs) and Mg- or Be-based II−VI semiconductor alloys. Finally there is an extensive bibliography included for those who wish to find additional information as well as tabulated values and graphical information on the properties of semiconductor alloys.
Author | : Jai Singh |
Publisher | : John Wiley & Sons |
Total Pages | : 667 |
Release | : 2020-01-07 |
Genre | : Science |
ISBN | : 111950631X |
Provides a semi-quantitative approach to recent developments in the study of optical properties of condensed matter systems Featuring contributions by noted experts in the field of electronic and optoelectronic materials and photonics, this book looks at the optical properties of materials as well as their physical processes and various classes. Taking a semi-quantitative approach to the subject, it presents a summary of the basic concepts, reviews recent developments in the study of optical properties of materials and offers many examples and applications. Optical Properties of Materials and Their Applications, 2nd Edition starts by identifying the processes that should be described in detail and follows with the relevant classes of materials. In addition to featuring four new chapters on optoelectronic properties of organic semiconductors, recent advances in electroluminescence, perovskites, and ellipsometry, the book covers: optical properties of disordered condensed matter and glasses; concept of excitons; photoluminescence, photoinduced changes, and electroluminescence in noncrystalline semiconductors; and photoinduced bond breaking and volume change in chalcogenide glasses. Also included are chapters on: nonlinear optical properties of photonic glasses; kinetics of the persistent photoconductivity in crystalline III-V semiconductors; and transparent white OLEDs. In addition, readers will learn about excitonic processes in quantum wells; optoelectronic properties and applications of quantum dots; and more. Covers all of the fundamentals and applications of optical properties of materials Includes theory, experimental techniques, and current and developing applications Includes four new chapters on optoelectronic properties of organic semiconductors, recent advances in electroluminescence, perovskites, and ellipsometry Appropriate for materials scientists, chemists, physicists and electrical engineers involved in development of electronic materials Written by internationally respected professionals working in physics and electrical engineering departments and government laboratories Optical Properties of Materials and Their Applications, 2nd Edition is an ideal book for senior undergraduate and postgraduate students, and teaching and research professionals in the fields of physics, chemistry, chemical engineering, materials science, and materials engineering.
Author | : Sadao Adachi |
Publisher | : Springer Science & Business Media |
Total Pages | : 725 |
Release | : 2013-11-27 |
Genre | : Technology & Engineering |
ISBN | : 1461552478 |
Knowledge of the refractive indices and absorption coefficients of semiconductors is especially import in the design and analysis of optical and optoelectronic devices. The determination of the optical constants of semiconductors at energies beyond the fundamental absorption edge is also known to be a powerful way of studying the electronic energy-band structures of the semiconductors. The purpose of this book is to give tabulated values and graphical information on the optical constants of the most popular semiconductors over the entire spectral range. This book presents data on the optical constants of crystalline and amorphous semiconductors. A complete set of the optical constants are presented in this book. They are: the complex dielectric constant (E=e.+ieJ, complex refractive index (n*=n+ik), absorption coefficient (a.), and normal-incidence reflectivity (R). The semiconductor materials considered in this book are the group-IV elemental and binary, llI-V, IT-VI, IV-VI binary semiconductors, and their alloys. The reader will fmd the companion book "Optical Properties of Crystalline and Amorphous Semiconductors: Materials and Fundamental Principles" useful since it emphasizes the basic material properties and fundamental prinCiples.
Author | : S. V. Gaponenko |
Publisher | : Cambridge University Press |
Total Pages | : 263 |
Release | : 1998-10-28 |
Genre | : Science |
ISBN | : 0521582415 |
Examines the optical properties of low-dimensional semiconductor structures, a hot research area - for graduate students and researchers.
Author | : Serge Oktyabrsky |
Publisher | : Springer Science & Business Media |
Total Pages | : 451 |
Release | : 2010-03-16 |
Genre | : Technology & Engineering |
ISBN | : 1441915478 |
Fundamentals of III-V Semiconductor MOSFETs presents the fundamentals and current status of research of compound semiconductor metal-oxide-semiconductor field-effect transistors (MOSFETs) that are envisioned as a future replacement of silicon in digital circuits. The material covered begins with a review of specific properties of III-V semiconductors and available technologies making them attractive to MOSFET technology, such as band-engineered heterostructures, effect of strain, nanoscale control during epitaxial growth. Due to the lack of thermodynamically stable native oxides on III-V's (such as SiO2 on Si), high-k oxides are the natural choice of dielectrics for III-V MOSFETs. The key challenge of the III-V MOSFET technology is a high-quality, thermodynamically stable gate dielectric that passivates the interface states, similar to SiO2 on Si. Several chapters give a detailed description of materials science and electronic behavior of various dielectrics and related interfaces, as well as physics of fabricated devices and MOSFET fabrication technologies. Topics also include recent progress and understanding of various materials systems; specific issues for electrical measurement of gate stacks and FETs with low and wide bandgap channels and high interface trap density; possible paths of integration of different semiconductor materials on Si platform.
Author | : Ulrike Woggon |
Publisher | : Springer |
Total Pages | : 252 |
Release | : 2014-03-12 |
Genre | : Technology & Engineering |
ISBN | : 9783662148112 |
This book presents an overview of the current understanding of the physics of zero-dimensional semiconductors. It concentrates mainly on quantum dots of wide-gap semiconductors, but touches also on zero-dimensional systems based on silicon and III-V materials. After providing the reader with a theoretical background, the author illustrates the specific properties of three-dimensionally confined semiconductors, such as the size dependence of energy states, optical transitions, and dephasing mechanisms with the results from numerous experiments in linear and nonlinear spectroscopy. Technological concepts of the growth concepts and the potential of this new class of semiconductor materials for electro-optic and nonlinear optical devices are also discussed.