Optical Modeling and Simulation of Thin-Film Photovoltaic Devices

Optical Modeling and Simulation of Thin-Film Photovoltaic Devices
Author: Janez Krc
Publisher: CRC Press
Total Pages: 269
Release: 2016-04-19
Genre: Science
ISBN: 1439818509

In wafer-based and thin-film photovoltaic (PV) devices, the management of light is a crucial aspect of optimization since trapping sunlight in active parts of PV devices is essential for efficient energy conversions. Optical modeling and simulation enable efficient analysis and optimization of the optical situation in optoelectronic and PV devices.

Optical Modeling and Simulation of Thin-Film Photovoltaic Devices

Optical Modeling and Simulation of Thin-Film Photovoltaic Devices
Author: Janez Krč
Publisher:
Total Pages: 0
Release: 2016
Genre: Physical optics
ISBN:

In wafer-based and thin-film photovoltaic (PV) devices, the management of light is a crucial aspect of optimization since trapping sunlight in active parts of PV devices is essential for efficient energy conversions. Optical modeling and simulation enable efficient analysis and optimization of the optical situation in optoelectronic and PV devices.

Photovoltaic Modeling Handbook

Photovoltaic Modeling Handbook
Author: Monika Freunek Muller
Publisher: John Wiley & Sons
Total Pages: 296
Release: 2018-09-05
Genre: Science
ISBN: 1119363527

This book provides the reader with a solid understanding of the fundamental modeling of photovoltaic devices. After the material independent limit of photovoltaic conversion, the readers are introduced to the most well-known theory of "classical" silicon modeling. Based on this, for each of the most important PV materials, their performance under different conditions is modeled. This book also covers different modeling approaches, from very fundamental theoretic investigations to applied numeric simulations based on experimental values. The book concludes wth a chapter on the influence of spectral variations. The information is supported by providing the names of simulation software and basic literature to the field. The information in the book gives the user specific application with a solid background in hand, to judge which materials could be appropriate as well as realistic expectations of the performance the devices could achieve.

Evolution of Thin Film Morphology

Evolution of Thin Film Morphology
Author: Matthew Pelliccione
Publisher: Springer Science & Business Media
Total Pages: 206
Release: 2008-01-29
Genre: Technology & Engineering
ISBN: 0387751092

The focus of this book is on modeling and simulations used in research on the morphological evolution during film growth. The authors emphasize the detailed mathematical formulation of the problem. The book will enable readers themselves to set up a computational program to investigate specific topics of interest in thin film deposition. It will benefit those working in any discipline that requires an understanding of thin film growth processes.

Semiconductor Materials for Solar Photovoltaic Cells

Semiconductor Materials for Solar Photovoltaic Cells
Author: M. Parans Paranthaman
Publisher: Springer
Total Pages: 290
Release: 2015-09-16
Genre: Technology & Engineering
ISBN: 3319203312

This book reviews the current status of semiconductor materials for conversion of sunlight to electricity, and highlights advances in both basic science and manufacturing. Photovoltaic (PV) solar electric technology will be a significant contributor to world energy supplies when reliable, efficient PV power products are manufactured in large volumes at low cost. Expert chapters cover the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally friendly copper zinc tin sulfide selenides. The latest methods for synthesis and characterization of solar cell materials are described, together with techniques for measuring solar cell efficiency. Semiconductor Materials for Solar Photovoltaic Cells presents the current state of the art as well as key details about future strategies to increase the efficiency and reduce costs, with particular focus on how to reduce the gap between laboratory scale efficiency and commercial module efficiency. This book will aid materials scientists and engineers in identifying research priorities to fulfill energy needs, and will also enable researchers to understand novel semiconductor materials that are emerging in the solar market. This integrated approach also gives science and engineering students a sense of the excitement and relevance of materials science in the development of novel semiconductor materials. · Provides a comprehensive introduction to solar PV cell materials · Reviews current and future status of solar cells with respect to cost and efficiency · Covers the full range of solar cell materials, from silicon and thin films to dye sensitized and organic solar cells · Offers an in-depth account of the semiconductor material strategies and directions for further research · Features detailed tables on the world leaders in efficiency demonstrations · Edited by scientists with experience in both research and industry

Thin-Film Silicon Solar Cells

Thin-Film Silicon Solar Cells
Author: Arvind Shah
Publisher: EPFL Press
Total Pages: 472
Release: 2010-08-19
Genre: Technology & Engineering
ISBN: 9781420066746

Photovoltaic technology has now developed to the extent that it is close to fulfilling the vision of a "solar-energy world," as devices based on this technology are becoming efficient, low-cost and durable. This book provides a comprehensive treatment of thin-film silicon, a prevalent PV material, in terms of its semiconductor nature, starting out with the physical properties, but concentrating on device applications. A special emphasis is given to amorphous silicon and microcrystalline silicon as photovoltaic materials, along with a model that allows these systems to be physically described in the simplest manner possible, thus allowing the student or scientist/engineer entering the field of thin-film electronics to master a few basic concepts that are distinct from those in the field of conventional semiconductors. The main part of the book deals with solar cells and modules by illustrating the basic functioning of these devices, along with their limitations, design optimization, testing and fabrication methods. Among the manufacturing processes discussed are plasma-assisted and hot-wire deposition, sputtering, and structuring techniques.

Recent Advances in Thin Films

Recent Advances in Thin Films
Author: Sushil Kumar
Publisher: Springer Nature
Total Pages: 721
Release: 2020-08-27
Genre: Technology & Engineering
ISBN: 9811561168

This volume comprises the expert contributions from the invited speakers at the 17th International Conference on Thin Films (ICTF 2017), held at CSIR-NPL, New Delhi, India. Thin film research has become increasingly important over the last few decades owing to the applications in latest technologies and devices. The book focuses on current advances in thin film deposition processes and characterization including thin film measurements. The chapters cover different types of thin films like metal, dielectric, organic and inorganic, and their diverse applications across transistors, resistors, capacitors, memory elements for computers, optical filters and mirrors, sensors, solar cells, LED's, transparent conducting coatings for liquid crystal display, printed circuit board, and automobile headlamp covers. This book can be a useful reference for students, researchers as well as industry professionals by providing an up-to-date knowledge on thin films and coatings.

Physics of Thin-Film Photovoltaics

Physics of Thin-Film Photovoltaics
Author: Victor G. Karpov
Publisher: John Wiley & Sons
Total Pages: 292
Release: 2021-11-09
Genre: Science
ISBN: 111965100X

PHYSICS OF THIN-FILM PHOTOVOLTAICS Tackling one of the hottest topics in renewables, thin-film photovoltaics, the authors present the latest updates, technologies, and applications, offering the most up-to-date and thorough coverage available to the engineer, scientist, or student. It appears rather paradoxical that thin-film photovoltaics (PVs) are made of materials that seem unacceptable from the classical PV perspective, and yet they often outperform classical PV. This exciting new volume solves that paradox by switching to a new physics paradigm. Many concepts here fall beyond the classical PV scope. The differences lie in device thinness (microns instead of millimeters) and morphology (non-crystalline instead of crystalline). In such structures, the charge carriers can reach electrodes without recombination. On the other hand, thin disordered structures render a possibility of detrimental lateral nonuniformities (“recombination highways”), and their energy spectra give rise to new recombination modes. The mechanisms of thermal exchange and device degradation are correspondingly unique. The overall objective of this book is to give a self-contained in-depth discussion of the physics of thin-film systems in a manner accessible to both researchers and students. It covers most aspects of the physics of thin-film PV, including device operations, material structure and parameters, thin-film junction formation, analytical and numerical modeling, concepts of large area effects and lateral non-uniformities, physics of shunting (both shunt growth and effects), and device degradation. Also, it reviews a variety of physical diagnostic techniques proven with thin-film PV. Whether for the veteran engineer or the student, this is a must-have for any library. This outstanding new volume: Covers not only the state-of-the-art of thin-film photovoltaics, but also the basics, making this volume useful not just to the veteran engineer, but the new-hire or student as well Offers a comprehensive coverage of thin-film photovoltaics, including operations, modeling, non-uniformities, piezo-effects, and degradation Includes novel concepts and applications never presented in book format before Is an essential reference, not just for the engineer, scientist, and student, but the unassuming level of presentation also makes it accessible to readers with a limited physics background Is filled with workable examples and designs that are helpful for practical applications Is useful as a textbook for researchers, students, and faculty for understanding new ideas in this rapidly emerging field Audience: Industrial professionals in photovoltaics, such as engineers, managers, research and development staff, technicians, government and private research labs; also academic and research universities, such as physics, chemistry, and electrical engineering departments, and graduate and undergraduate students studying electronic devices, semiconductors, and energy disciplines

Advanced Characterization Techniques for Thin Film Solar Cells

Advanced Characterization Techniques for Thin Film Solar Cells
Author: Daniel Abou-Ras
Publisher: John Wiley & Sons
Total Pages: 760
Release: 2016-07-13
Genre: Science
ISBN: 3527699015

The book focuses on advanced characterization methods for thin-film solar cells that have proven their relevance both for academic and corporate photovoltaic research and development. After an introduction to thin-film photovoltaics, highly experienced experts report on device and materials characterization methods such as electroluminescence analysis, capacitance spectroscopy, and various microscopy methods. In the final part of the book simulation techniques are presented which are used for ab-initio calculations of relevant semiconductors and for device simulations in 1D, 2D and 3D. Building on a proven concept, this new edition also covers thermography, transient optoelectronic methods, and absorption and photocurrent spectroscopy.

Next Generation of Photovoltaics

Next Generation of Photovoltaics
Author: Ana Cristobal
Publisher: Springer Science & Business Media
Total Pages: 362
Release: 2012-02-16
Genre: Technology & Engineering
ISBN: 3642233686

This book presents new concepts for a next generation of PV. Among these concepts are: Multijunction solar cells, multiple excitation solar cells (or how to take benefit of high energy photons for the creation of more than one electron hole-pair), intermediate band solar cells (or how to take advantage of below band-gap energy photons) and related technologies (for quantum dots, nitrides, thin films), advanced light management approaches (plasmonics). Written by world-class experts in next generation photovoltaics this book is an essential reference guide accessible to both beginners and experts working with solar cell technology. The book deeply analyzes the current state-of-the-art of the new photovoltaic approaches and outlines the implementation paths of these advanced devices. Topics addressed range from the fundamentals to the description of state-of-the-art of the new types of solar cells.