Optical And Electronic Properties Of Ingaas Self Assembled Quantum Dots
Download Optical And Electronic Properties Of Ingaas Self Assembled Quantum Dots full books in PDF, epub, and Kindle. Read online free Optical And Electronic Properties Of Ingaas Self Assembled Quantum Dots ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Malte Huck |
Publisher | : diplom.de |
Total Pages | : 137 |
Release | : 2010-03-25 |
Genre | : Science |
ISBN | : 3836644398 |
Inhaltsangabe:Abstract: Chapter 1: In this thesis we investigate the optical properties of self-assembled quantum dots exposed to a lateral electric field. As a result of the electric field the wave functions of electrons and holes inside the quantum dot are manipulated, which makes it possible to tune their energy levels and control the optical properties of the system. The possibility of tuning the emission energy of different few particle states using this method makes this system very promising for the use of a source of polarization entangled photons as discussed in the following sections. In Section 1.1 the concept of entangled states is introduced together with a brief historical overview. The possibility of using the exciton biexciton cascade of a self-assembled quantum dot for the generation of entangled photon pairs is presented in Section 1.2. Chapter 2: In this chapter we introduce the concept of quantum dots and demonstrate their optical emission properties. In Section 2.1 the quantum dot is introduced as a three-dimensional charge carrier trap. Several types of quantum dots are presented in an overview. In Section 2.2 we discuss the physical effects that occur on the way from bulk semiconductor material to the three-dimensional charge carrier confinement in the case of quantum dots. The growth of self-assembled quantum dot samples is the topic of Section 2.3, where the technique of molecular beam epitaxy is introduced (Section 2.3.1). This technique is used to grow the semiconductor quantum dots via heteroepitaxy in the Stranski-Krastanov growth mode (Section 2.3.2). Quantum dots are commonly referred to as artificial atoms due to their atomlike emission features. The origin for this expression is explained in Section 2.4 on the basis of the energetic structure of self-assembled quantum dots. The optical properties of quantum dots are discussed in Section 2.5, beginning with an introduction to the experimental setup that has been used to investigate the quantum dots during this thesis (Section 2.5.1). Different optical excitation modes are presented in Section 2.5.2 and in Section 2.5.3 we discuss, how to achieve a low enough quantum dot density on the analyzed samples. Section 2.5.4 deals with the photoluminescence of different exciton states and in Section 2.5.5 we present how these lines can be identified via power dependent measurements. Finally, the concept of initial charges in self-assembled quantum dots is presented in [...]
Author | : Peter Michler |
Publisher | : Springer Science & Business Media |
Total Pages | : 370 |
Release | : 2003-12-09 |
Genre | : Science |
ISBN | : 9783540140221 |
Special focus is given to the optical and electronic properties of single quantum dots due to their potential applications in devices operating with single electrons and/or single photons. This includes quantum dots in electric and magnetic fields, cavity-quantum electrodynamics, nonclassical light generation, and coherent optical control of excitons.
Author | : |
Publisher | : Academic Press |
Total Pages | : 385 |
Release | : 1999-03-29 |
Genre | : Technology & Engineering |
ISBN | : 0080864589 |
This volume is concerned with the crystal growth, optical properties, and optical device application of the self-formed quantum dot, which is one of the major current subjects in the semiconductor research field.The atom-like density of states in quantum dots is expected to drastically improve semiconductor laser performance, and to develop new optical devices. However, since the first theoretical prediction for its great possibilities was presented in 1982, due to the difficulty of their fabrication process. Recently, the advent of self-organized quantum dots has made it possible to apply the results in important optical devices, and further progress is expected in the near future.The authors, working for Fujitsu Laboratories, are leading this quantum-dot research field. In this volume, they describe the state of the art in the entire field, with particular emphasis on practical applications.
Author | : Elena Borovitskaya |
Publisher | : World Scientific |
Total Pages | : 214 |
Release | : 2002-07-08 |
Genre | : Technology & Engineering |
ISBN | : 9814488798 |
In this book, leading experts on quantum dot theory and technology provide comprehensive reviews of all aspects of quantum dot systems. The following topics are covered: (1) energy states in quantum dots, including the effects of strain and many-body effects; (2) self-assembly and self-ordering of quantum dots in semiconductor systems; (3) growth, structures, and optical properties of III-nitride quantum dots; (4) quantum dot lasers.
Author | : Jean-Pierre Leburton |
Publisher | : CRC Press |
Total Pages | : 991 |
Release | : 2021-12-23 |
Genre | : Technology & Engineering |
ISBN | : 1000348199 |
Since the early 1990s, quantum dots have become an integral part of research in solid state physics for their fundamental properties that mimic the behavior of atoms and molecules on a larger scale. They also have a broad range of applications in engineering and medicines for their ability to tune their electronic properties to achieve specific functions. This book is a compilation of articles that span 20 years of research on comprehensive physical models developed by their authors to understand the detailed properties of these quantum objects and to tailor them for specific applications. Far from being exhaustive, this book focuses on topics of interest for solid state physicists, materials scientists, engineers, and general readers, such as quantum dots and nanocrystals for single-electron charging with applications in memory devices, quantum dots for electron-spin manipulation with applications in quantum information processing, and finally self-assembled quantum dots for applications in nanophotonics.
Author | : Zhiming M Wang |
Publisher | : Springer Science & Business Media |
Total Pages | : 470 |
Release | : 2007-11-29 |
Genre | : Technology & Engineering |
ISBN | : 0387741917 |
This multidisciplinary book provides up-to-date coverage of carrier and spin dynamics and energy transfer and structural interaction among nanostructures. Coverage also includes current device applications such as quantum dot lasers and detectors, as well as future applications to quantum information processing. The book will serve as a reference for anyone working with or planning to work with quantum dots.
Author | : Saumya Sengupta |
Publisher | : Springer |
Total Pages | : 77 |
Release | : 2017-08-04 |
Genre | : Technology & Engineering |
ISBN | : 9811057028 |
This book explores the effects of growth pause or ripening time on the properties of quantum dots(QDs). It covers the effects of post-growth rapid thermal annealing (RTA) treatment on properties of single layer QDs. The effects of post-growth rapid thermal annealing (RTA) treatment on properties of single layer QDs are discussed. The book offers insight into InAs/GaAs bilayer QD heterostructures with very thin spacer layers and discusses minimum spacer thickness required to grow electronically coupled bilayer QD heterostructures. These techniques make bilayer QD heterostructures a better choice over the single layer and uncoupled multilayer QD heterostructure. Finally, the book discusses sub-monolayer (SML) growth technique to grow QDs. This recent technique has been proven to improve the device performance significantly. The contents of this monograph will prove useful to researchers and professionals alike.
Author | : Ameenah Al-Ahmadi |
Publisher | : BoD – Books on Demand |
Total Pages | : 482 |
Release | : 2012-06-13 |
Genre | : Science |
ISBN | : 9535106481 |
The book "Fingerprints in the optical and transport properties of quantum dots" provides novel and efficient methods for the calculation and investigating of the optical and transport properties of quantum dot systems. This book is divided into two sections. In section 1 includes ten chapters where novel optical properties are discussed. In section 2 involve eight chapters that investigate and model the most important effects of transport and electronics properties of quantum dot systems This is a collaborative book sharing and providing fundamental research such as the one conducted in Physics, Chemistry, Material Science, with a base text that could serve as a reference in research by presenting up-to-date research work on the field of quantum dot systems.
Author | : Holger Schmeckebier |
Publisher | : Springer |
Total Pages | : 205 |
Release | : 2016-10-21 |
Genre | : Technology & Engineering |
ISBN | : 3319442759 |
This thesis examines the unique properties of gallium arsenide (GaAs)-based quantum-dot semiconductor optical amplifiers for optical communication networks, introducing readers to their fundamentals, basic parameters and manifold applications. The static and dynamic properties of these amplifiers are discussed extensively in comparison to conventional, non quantum-dot based amplifiers, and their unique advantages are elaborated on, such as the fast carrier dynamics and the decoupling of gain and phase dynamics. In addition to diverse amplification scenarios involving single and multiple high symbol rate amplitude and phase-coded data signals, wide-range wavelength conversion as a key functionality for optical signal processing is investigated and discussed in detail. Furthermore, two novel device concepts are developed and demonstrated that have the potential to significantly simplify network architectures, reducing the investment and maintenance costs as well as the energy consumption of future networks.
Author | : Marius Grundmann |
Publisher | : Springer Science & Business Media |
Total Pages | : 450 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 3642561497 |
Traces the quest to use nanostructured media for novel and improved optoelectronic devices. Leading experts - among them Nobel laureate Zhores Alferov - write here about the fundamental concepts behind nano-optoelectronics, the material basis, physical phenomena, device physics and systems.