Operator Algebras And Their Applications Ii
Download Operator Algebras And Their Applications Ii full books in PDF, epub, and Kindle. Read online free Operator Algebras And Their Applications Ii ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : David E. Evans |
Publisher | : Cambridge University Press |
Total Pages | : 257 |
Release | : 1988 |
Genre | : Mathematics |
ISBN | : 052136843X |
These volumes form an authoritative statement of the current state of research in Operator Algebras. They consist of papers arising from a year-long symposium held at the University of Warwick. Contributors include many very well-known figures in the field.
Author | : Peter A. Fillmore and James A. Mingo |
Publisher | : American Mathematical Soc. |
Total Pages | : 184 |
Release | : 1998-07-28 |
Genre | : Operator algebras |
ISBN | : 9780821871287 |
The study of operator algebras, which grew out of von Neumann's work in the 1920s and 30s on modelling quantum mechanics, has in recent years experienced tremendous growth and vitality, with significant applications in other areas both within mathematics and in other fields. For this reason, and because of the existence of a strong Canadian school in the subject, the topic was a natural candidate for an emphasis year at The Fields Institute. This volume is the second selection of papers that arose from the seminars and workshops of a year-long program, Operator Algebras and Applications, that took place at The Fields Institute. Topics covered include the classification of amenable C*-algebras, lifting theorems for completely positive maps, and automorphisms of von Neumann algebras of type III.
Author | : Richard V. Kadison |
Publisher | : American Mathematical Soc. |
Total Pages | : 290 |
Release | : 1998-01-13 |
Genre | : Mathematics |
ISBN | : 0821894692 |
This volume is the companion volume to Fundamentals of the Theory of Operator Algebras. Volume I--Elementary Theory (Graduate Studies in Mathematics series, Volume 15). The goal of the text proper is to teach the subject and lead readers to where the vast literature--in the subject specifically and in its many applications--becomes accessible. The choice of material was made from among the fundamentals of what may be called the "classical" theory of operator algebras. This volume contains the written solutions to the exercises in the Fundamentals of the Theory of Operator Algebras. Volume I--Elementary Theory.
Author | : James Lepowsky |
Publisher | : Springer Science & Business Media |
Total Pages | : 330 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 0817681868 |
* Introduces the fundamental theory of vertex operator algebras and its basic techniques and examples. * Begins with a detailed presentation of the theoretical foundations and proceeds to a range of applications. * Includes a number of new, original results and brings fresh perspective to important works of many other researchers in algebra, lie theory, representation theory, string theory, quantum field theory, and other areas of math and physics.
Author | : Peter A. Fillmore |
Publisher | : American Mathematical Soc. |
Total Pages | : 182 |
Release | : 1997 |
Genre | : Mathematics |
ISBN | : 0821809083 |
The study of operator algebras, which grew out of von Neumann's work in the 1920s and the 1930s on modelling quantum mechanics, has in recent years experienced tremendous growth and vitality. This growth has resulted in significant applications in other areas - both within and outside mathematics. The field was a natural candidate for a 1994-1995 program year in Operator Algebras and Applications held at The Fields Institute for Research in the Mathematical Sciences. This volume contains a selection of papers that arose from the seminars and workshops of the program. Topics covered include the classification of amenable C*-algebras, the Baum-Connes conjecture, E[subscript 0] semigroups, subfactors, E-theory, quasicrystals, and the solution to a long-standing problem in operator theory: Can almost commuting self-adjoint matrices be approximated by commuting self-adjoint matrices?
Author | : Erik M. Alfsen |
Publisher | : Springer Science & Business Media |
Total Pages | : 372 |
Release | : 2001-04-27 |
Genre | : Mathematics |
ISBN | : 9780817638900 |
The topic of this book is the theory of state spaces of operator algebras and their geometry. The states are of interest because they determine representations of the algebra, and its algebraic structure is in an intriguing and fascinating fashion encoded in the geometry of the state space. From the beginning the theory of operator algebras was motivated by applications to physics, but recently it has found unexpected new applica tions to various fields of pure mathematics, like foliations and knot theory, and (in the Jordan algebra case) also to Banach manifolds and infinite di mensional holomorphy. This makes it a relevant field of study for readers with diverse backgrounds and interests. Therefore this book is not intended solely for specialists in operator algebras, but also for graduate students and mathematicians in other fields who want to learn the subject. We assume that the reader starts out with only the basic knowledge taught in standard graduate courses in real and complex variables, measure theory and functional analysis. We have given complete proofs of basic results on operator algebras, so that no previous knowledge in this field is needed. For discussion of some topics, more advanced prerequisites are needed. Here we have included all necessary definitions and statements of results, but in some cases proofs are referred to standard texts. In those cases we have tried to give references to material that can be read and understood easily in the context of our book.
Author | : Bruce Blackadar |
Publisher | : Springer Science & Business Media |
Total Pages | : 347 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461395720 |
K -Theory has revolutionized the study of operator algebras in the last few years. As the primary component of the subject of "noncommutative topol ogy," K -theory has opened vast new vistas within the structure theory of C* algebras, as well as leading to profound and unexpected applications of opera tor algebras to problems in geometry and topology. As a result, many topolo gists and operator algebraists have feverishly begun trying to learn each others' subjects, and it appears certain that these two branches of mathematics have become deeply and permanently intertwined. Despite the fact that the whole subject is only about a decade old, operator K -theory has now reached a state of relative stability. While there will undoubtedly be many more revolutionary developments and applications in the future, it appears the basic theory has more or less reached a "final form." But because of the newness of the theory, there has so far been no comprehensive treatment of the subject. It is the ambitious goal of these notes to fill this gap. We will develop the K -theory of Banach algebras, the theory of extensions of C*-algebras, and the operator K -theory of Kasparov from scratch to its most advanced aspects. We will not treat applications in detail; however, we will outline the most striking of the applications to date in a section at the end, as well as mentioning others at suitable points in the text.
Author | : Ola Bratteli |
Publisher | : Springer Science & Business Media |
Total Pages | : 528 |
Release | : 1987 |
Genre | : Mathematics |
ISBN | : 9783540170938 |
This is the first of two volumes presenting the theory of operator algebras with applications to quantum statistical mechanics. The authors' approach to the operator theory is to a large extent governed by the dictates of the physical applications. The book is self-contained and most proofs are presented in detail, which makes it a useful text for students with a knowledge of basic functional analysis. The introductory chapter surveys the history and justification of algebraic techniques in statistical physics and outlines the applications that have been made. The second edition contains new and improved results. The principal changes include: A more comprehensive discussion of dissipative operators and analytic elements; the positive resolution of the question of whether maximal orthogonal probability measure on the state space of C-algebra were automatically maximal along all the probability measures on the space.
Author | : Yi-Zhi Huang |
Publisher | : Springer Science & Business Media |
Total Pages | : 289 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461242762 |
The theory of vertex operator algebras and their representations has been showing its power in the solution of concrete mathematical problems and in the understanding of conceptual but subtle mathematical and physical struc- tures of conformal field theories. Much of the recent progress has deep connec- tions with complex analysis and conformal geometry. Future developments, especially constructions and studies of higher-genus theories, will need a solid geometric theory of vertex operator algebras. Back in 1986, Manin already observed in Man) that the quantum theory of (super )strings existed (in some sense) in two entirely different mathematical fields. Under canonical quantization this theory appeared to a mathematician as the representation theories of the Heisenberg, Vir as oro and affine Kac- Moody algebras and their superextensions. Quantization with the help of the Polyakov path integral led on the other hand to the analytic theory of algebraic (super ) curves and their moduli spaces, to invariants of the type of the analytic curvature, and so on.He pointed out further that establishing direct mathematical connections between these two forms of a single theory was a big and important problem. On the one hand, the theory of vertex operator algebras and their repre- sentations unifies (and considerably extends) the representation theories of the Heisenberg, Virasoro and Kac-Moody algebras and their superextensions.
Author | : J-P Antoine |
Publisher | : Springer Science & Business Media |
Total Pages | : 554 |
Release | : 2002-12-31 |
Genre | : Mathematics |
ISBN | : 9781402010255 |
Algebras of bounded operators are familiar, either as C*-algebras or as von Neumann algebras. A first generalization is the notion of algebras of unbounded operators (O*-algebras), mostly developed by the Leipzig school and in Japan (for a review, we refer to the monographs of K. Schmüdgen [1990] and A. Inoue [1998]). This volume goes one step further, by considering systematically partial *-algebras of unbounded operators (partial O*-algebras) and the underlying algebraic structure, namely, partial *-algebras. It is the first textbook on this topic. The first part is devoted to partial O*-algebras, basic properties, examples, topologies on them. The climax is the generalization to this new framework of the celebrated modular theory of Tomita-Takesaki, one of the cornerstones for the applications to statistical physics. The second part focuses on abstract partial *-algebras and their representation theory, obtaining again generalizations of familiar theorems (Radon-Nikodym, Lebesgue).