Opera De Cribro
Download Opera De Cribro full books in PDF, epub, and Kindle. Read online free Opera De Cribro ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : John B. Friedlander |
Publisher | : American Mathematical Soc. |
Total Pages | : 554 |
Release | : 2010-06-22 |
Genre | : Mathematics |
ISBN | : 0821849700 |
This is a true masterpiece that will prove to be indispensable to the serious researcher for many years to come. --Enrico Bombieri, Institute for Advanced Study This is a truly comprehensive account of sieves and their applications, by two of the world's greatest authorities. Beginners will find a thorough introduction to the subject, with plenty of helpful motivation. The more practised reader will appreciate the authors' insights into some of the more mysterious parts of the theory, as well as the wealth of new examples. --Roger Heath-Brown, University of Oxford, Fellow of Royal Society This is a comprehensive and up-to-date treatment of sieve methods. The theory of the sieve is developed thoroughly with complete and accessible proofs of the basic theorems. Included is a wide range of applications, both to traditional questions such as those concerning primes, and to areas previously unexplored by sieve methods, such as elliptic curves, points on cubic surfaces and quantum ergodicity. New proofs are given also of some of the central theorems of analytic number theory; these proofs emphasize and take advantage of the applicability of sieve ideas. The book contains numerous comments which provide the reader with insight into the workings of the subject, both as to what the sieve can do and what it cannot do. The authors reveal recent developements by which the parity barrier can be breached, exposing golden nuggets of the subject, previously inaccessible. The variety in the topics covered and in the levels of difficulty encountered makes this a work of value to novices and experts alike, both as an educational tool and a basic reference.
Author | : Sam Chow |
Publisher | : American Mathematical Society |
Total Pages | : 86 |
Release | : 2024-05-15 |
Genre | : Mathematics |
ISBN | : 1470468794 |
Author | : Olivier Bordellès |
Publisher | : Springer Nature |
Total Pages | : 782 |
Release | : 2020-11-26 |
Genre | : Mathematics |
ISBN | : 3030549461 |
This textbook covers a wide array of topics in analytic and multiplicative number theory, suitable for graduate level courses. Extensively revised and extended, this Advanced Edition takes a deeper dive into the subject, with the elementary topics of the previous edition making way for a fuller treatment of more advanced topics. The core themes of the distribution of prime numbers, arithmetic functions, lattice points, exponential sums and number fields now contain many more details and additional topics. In addition to covering a range of classical and standard results, some recent work on a variety of topics is discussed in the book, including arithmetic functions of several variables, bounded gaps between prime numbers à la Yitang Zhang, Mordell's method for exponential sums over finite fields, the resonance method for the Riemann zeta function, the Hooley divisor function, and many others. Throughout the book, the emphasis is on explicit results. Assuming only familiarity with elementary number theory and analysis at an undergraduate level, this textbook provides an accessible gateway to a rich and active area of number theory. With an abundance of new topics and 50% more exercises, all with solutions, it is now an even better guide for independent study.
Author | : Xiaodong Xu |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 190 |
Release | : 2018-08-06 |
Genre | : Mathematics |
ISBN | : 3110576708 |
Key problems and conjectures have played an important role in promoting the development of Ramsey theory, a field where great progress has been made during the past two decades, with some old problems solved and many new problems proposed. The present book will be helpful to readers who wish to learn about interesting problems in Ramsey theory, to see how they are interconnected, and then to study them in depth. This book is the first problem book of such scope in Ramsey theory. Many unsolved problems, conjectures and related partial results in Ramsey theory are presented, in areas such as extremal graph theory, additive number theory, discrete geometry, functional analysis, algorithm design, and in other areas. Most presented problems are easy to understand, but they may be difficult to solve. They can be appreciated on many levels and by a wide readership, ranging from undergraduate students majoring in mathematics to research mathematicians. This collection is an essential reference for mathematicians working in combinatorics and number theory, as well as for computer scientists studying algorithms. Contents Some definitions and notations Ramsey theory Bi-color diagonal classical Ramsey numbers Paley graphs and lower bounds for R(k, k) Bi-color off-diagonal classical Ramsey numbers Multicolor classical Ramsey numbers Generalized Ramsey numbers Folkman numbers The Erdős–Hajnal conjecture Other Ramsey-type problems in graph theory On van der Waerden numbers and Szemeredi’s theorem More problems of Ramsey type in additive number theory Sidon–Ramsey numbers Games in Ramsey theory Local Ramsey theory Set-coloring Ramsey theory Other problems and conjectures
Author | : Kevin Broughan |
Publisher | : Cambridge University Press |
Total Pages | : 514 |
Release | : 2017-11-02 |
Genre | : Mathematics |
ISBN | : 1108195431 |
The Riemann hypothesis (RH) is perhaps the most important outstanding problem in mathematics. This two-volume text presents the main known equivalents to RH using analytic and computational methods. The book is gentle on the reader with definitions repeated, proofs split into logical sections, and graphical descriptions of the relations between different results. It also includes extensive tables, supplementary computational tools, and open problems suitable for research. Accompanying software is free to download. These books will interest mathematicians who wish to update their knowledge, graduate and senior undergraduate students seeking accessible research problems in number theory, and others who want to explore and extend results computationally. Each volume can be read independently. Volume 1 presents classical and modern arithmetic equivalents to RH, with some analytic methods. Volume 2 covers equivalences with a strong analytic orientation, supported by an extensive set of appendices containing fully developed proofs.
Author | : Emmanuel Breuillard |
Publisher | : Cambridge University Press |
Total Pages | : 375 |
Release | : 2014-02-17 |
Genre | : Mathematics |
ISBN | : 1107036852 |
This collection of survey articles focuses on recent developments at the boundary between geometry, dynamical systems, number theory and combinatorics.
Author | : Hugh Montgomery |
Publisher | : Springer |
Total Pages | : 300 |
Release | : 2017-09-11 |
Genre | : Mathematics |
ISBN | : 3319599690 |
Exploring the Riemann Zeta Function: 190 years from Riemann's Birth presents a collection of chapters contributed by eminent experts devoted to the Riemann Zeta Function, its generalizations, and their various applications to several scientific disciplines, including Analytic Number Theory, Harmonic Analysis, Complex Analysis, Probability Theory, and related subjects. The book focuses on both old and new results towards the solution of long-standing problems as well as it features some key historical remarks. The purpose of this volume is to present in a unified way broad and deep areas of research in a self-contained manner. It will be particularly useful for graduate courses and seminars as well as it will make an excellent reference tool for graduate students and researchers in Mathematics, Mathematical Physics, Engineering and Cryptography.
Author | : János Pintz |
Publisher | : Walter de Gruyter |
Total Pages | : 418 |
Release | : 2013-12-12 |
Genre | : Mathematics |
ISBN | : 3110282429 |
Paul Turán, one of the greatest Hungarian mathematicians, was born 100 years ago, on August 18, 1910. To celebrate this occasion the Hungarian Academy of Sciences, the Alfréd Rényi Institute of Mathematics, the János Bolyai Mathematical Society and the Mathematical Institute of Eötvös Loránd University organized an international conference devoted to Paul Turán's main areas of interest: number theory, selected branches of analysis, and selected branches of combinatorics. The conference was held in Budapest, August 22-26, 2011. Some of the invited lectures reviewed different aspects of Paul Turán's work and influence. Most of the lectures allowed participants to report about their own work in the above mentioned areas of mathematics.
Author | : Olivier Ramaré |
Publisher | : Springer Nature |
Total Pages | : 342 |
Release | : 2022-03-03 |
Genre | : Mathematics |
ISBN | : 3030731693 |
This textbook offers a unique exploration of analytic number theory that is focused on explicit and realistic numerical bounds. By giving precise proofs in simplified settings, the author strategically builds practical tools and insights for exploring the behavior of arithmetical functions. An active learning style is encouraged across nearly three hundred exercises, making this an indispensable resource for both students and instructors. Designed to allow readers several different pathways to progress from basic notions to active areas of research, the book begins with a study of arithmetic functions and notions of arithmetical interest. From here, several guided “walks” invite readers to continue, offering explorations along three broad themes: the convolution method, the Levin–Faĭnleĭb theorem, and the Mellin transform. Having followed any one of the walks, readers will arrive at “higher ground”, where they will find opportunities for extensions and applications, such as the Selberg formula, Brun’s sieve, and the Large Sieve Inequality. Methodology is emphasized throughout, with frequent opportunities to explore numerically using computer algebra packages Pari/GP and Sage. Excursions in Multiplicative Number Theory is ideal for graduate students and upper-level undergraduate students who are familiar with the fundamentals of analytic number theory. It will also appeal to researchers in mathematics and engineering interested in experimental techniques in this active area.
Author | : Dimitris Koukoulopoulos |
Publisher | : American Mathematical Soc. |
Total Pages | : 356 |
Release | : 2020-07-28 |
Genre | : Education |
ISBN | : 1470462850 |
Prime numbers have fascinated mathematicians since the time of Euclid. This book presents some of our best tools to capture the properties of these fundamental objects, beginning with the most basic notions of asymptotic estimates and arriving at the forefront of mathematical research. Detailed proofs of the recent spectacular advances on small and large gaps between primes are made accessible for the first time in textbook form. Some other highlights include an introduction to probabilistic methods, a detailed study of sieves, and elements of the theory of pretentious multiplicative functions leading to a proof of Linnik's theorem. Throughout, the emphasis has been placed on explaining the main ideas rather than the most general results available. As a result, several methods are presented in terms of concrete examples that simplify technical details, and theorems are stated in a form that facilitates the understanding of their proof at the cost of sacrificing some generality. Each chapter concludes with numerous exercises of various levels of difficulty aimed to exemplify the material, as well as to expose the readers to more advanced topics and point them to further reading sources.