On The Statistical Analysis Of Series Of Observations
Download On The Statistical Analysis Of Series Of Observations full books in PDF, epub, and Kindle. Read online free On The Statistical Analysis Of Series Of Observations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : R. Sneyers |
Publisher | : Unipub |
Total Pages | : 192 |
Release | : 1990-01-01 |
Genre | : Climatology |
ISBN | : 9789263104151 |
It is no longer disputed nowadays that mathematical statistics is the main tool to be used in climatology. Mathematical statistics is in fact the science of random models and the purpose of the statistics analysis of series of observations is to from among the models which science makes available, the one which bes represents the behaviour of the observed phenomenon. Thi atitude may be justifed in two ways. From the theoretical point of view, the representation of the observad phenomenon by a model depending on aminimum number of paramenters anables objective statistical conslusions to be compared with the physical theories put forward, iether to confirm their validity or to reveal weaknesse: thus statistical analysis appears as a means for progress in the ofresearch. From the practical point view, due to the efficiency of methods of statistical analysis, their utilization ensures that the best use is made of the information accumulated dy the series of observations and that the maximum benefic will be derived from the capital represented by this information. If we think of the investments and operational cost which have been approved for the acquisition of the series of observations and of the economic value of these, which is continually demonstrated in the applications of meteorology and climatology, the necessity of such a position becomes obvious.
Author | : R. Gnanadesikan |
Publisher | : John Wiley & Sons |
Total Pages | : 386 |
Release | : 2011-01-25 |
Genre | : Mathematics |
ISBN | : 1118030923 |
A practical guide for multivariate statistical techniques-- nowupdated and revised In recent years, innovations in computer technology and statisticalmethodologies have dramatically altered the landscape ofmultivariate data analysis. This new edition of Methods forStatistical Data Analysis of Multivariate Observations explorescurrent multivariate concepts and techniques while retaining thesame practical focus of its predecessor. It integrates methods anddata-based interpretations relevant to multivariate analysis in away that addresses real-world problems arising in many areas ofinterest. Greatly revised and updated, this Second Edition provides helpfulexamples, graphical orientation, numerous illustrations, and anappendix detailing statistical software, including the S (or Splus)and SAS systems. It also offers * An expanded chapter on cluster analysis that covers advances inpattern recognition * New sections on inputs to clustering algorithms and aids forinterpreting the results of cluster analysis * An exploration of some new techniques of summarization andexposure * New graphical methods for assessing the separations among theeigenvalues of a correlation matrix and for comparing sets ofeigenvectors * Knowledge gained from advances in robust estimation anddistributional models that are slightly broader than themultivariate normal This Second Edition is invaluable for graduate students, appliedstatisticians, engineers, and scientists wishing to usemultivariate techniques in a variety of disciplines.
Author | : D.R. Helsel |
Publisher | : Elsevier |
Total Pages | : 539 |
Release | : 1993-03-03 |
Genre | : Science |
ISBN | : 0080875084 |
Data on water quality and other environmental issues are being collected at an ever-increasing rate. In the past, however, the techniques used by scientists to interpret this data have not progressed as quickly. This is a book of modern statistical methods for analysis of practical problems in water quality and water resources.The last fifteen years have seen major advances in the fields of exploratory data analysis (EDA) and robust statistical methods. The 'real-life' characteristics of environmental data tend to drive analysis towards the use of these methods. These advances are presented in a practical and relevant format. Alternate methods are compared, highlighting the strengths and weaknesses of each as applied to environmental data. Techniques for trend analysis and dealing with water below the detection limit are topics covered, which are of great interest to consultants in water-quality and hydrology, scientists in state, provincial and federal water resources, and geological survey agencies.The practising water resources scientist will find the worked examples using actual field data from case studies of environmental problems, of real value. Exercises at the end of each chapter enable the mechanics of the methodological process to be fully understood, with data sets included on diskette for easy use. The result is a book that is both up-to-date and immediately relevant to ongoing work in the environmental and water sciences.
Author | : National Research Council |
Publisher | : National Academies Press |
Total Pages | : 335 |
Release | : 2004-07-24 |
Genre | : Social Science |
ISBN | : 0309091268 |
Many racial and ethnic groups in the United States, including blacks, Hispanics, Asians, American Indians, and others, have historically faced severe discriminationâ€"pervasive and open denial of civil, social, political, educational, and economic opportunities. Today, large differences among racial and ethnic groups continue to exist in employment, income and wealth, housing, education, criminal justice, health, and other areas. While many factors may contribute to such differences, their size and extent suggest that various forms of discriminatory treatment persist in U.S. society and serve to undercut the achievement of equal opportunity. Measuring Racial Discrimination considers the definition of race and racial discrimination, reviews the existing techniques used to measure racial discrimination, and identifies new tools and areas for future research. The book conducts a thorough evaluation of current methodologies for a wide range of circumstances in which racial discrimination may occur, and makes recommendations on how to better assess the presence and effects of discrimination.
Author | : Janet Peacock |
Publisher | : Oxford University Press |
Total Pages | : 540 |
Release | : 2011 |
Genre | : Medical |
ISBN | : 0199551286 |
The majority of medical research involves quantitative methods and so it is essential to be able to understand and interpret statistics. This book shows readers how to develop the skills required to critically appraise research evidence effectively, and how to conduct research and communicate their findings.
Author | : N. I. Fisher |
Publisher | : Cambridge University Press |
Total Pages | : 358 |
Release | : 1993-08-19 |
Genre | : Mathematics |
ISBN | : 9780521456999 |
This is the first comprehensive, yet clearly presented, account of statistical methods for analysing spherical data. The analysis of data, in the form of directions in space or of positions of points on a spherical surface, is required in many contexts in the earth sciences, astrophysics and other fields, yet the methodology required is disseminated throughout the literature. Statistical Analysis of Spherical Data aims to present a unified and up-to-date account of these methods for practical use. The emphasis is on applications rather than theory, with the statistical methods being illustrated throughout the book by data examples.
Author | : Institute of Medicine |
Publisher | : National Academies Press |
Total Pages | : 221 |
Release | : 2001-01-01 |
Genre | : Medical |
ISBN | : 0309171148 |
Clinical trials are used to elucidate the most appropriate preventive, diagnostic, or treatment options for individuals with a given medical condition. Perhaps the most essential feature of a clinical trial is that it aims to use results based on a limited sample of research participants to see if the intervention is safe and effective or if it is comparable to a comparison treatment. Sample size is a crucial component of any clinical trial. A trial with a small number of research participants is more prone to variability and carries a considerable risk of failing to demonstrate the effectiveness of a given intervention when one really is present. This may occur in phase I (safety and pharmacologic profiles), II (pilot efficacy evaluation), and III (extensive assessment of safety and efficacy) trials. Although phase I and II studies may have smaller sample sizes, they usually have adequate statistical power, which is the committee's definition of a "large" trial. Sometimes a trial with eight participants may have adequate statistical power, statistical power being the probability of rejecting the null hypothesis when the hypothesis is false. Small Clinical Trials assesses the current methodologies and the appropriate situations for the conduct of clinical trials with small sample sizes. This report assesses the published literature on various strategies such as (1) meta-analysis to combine disparate information from several studies including Bayesian techniques as in the confidence profile method and (2) other alternatives such as assessing therapeutic results in a single treated population (e.g., astronauts) by sequentially measuring whether the intervention is falling above or below a preestablished probability outcome range and meeting predesigned specifications as opposed to incremental improvement.
Author | : Roderick J. A. Little |
Publisher | : John Wiley & Sons |
Total Pages | : 444 |
Release | : 2019-03-21 |
Genre | : Mathematics |
ISBN | : 1118595696 |
An up-to-date, comprehensive treatment of a classic text on missing data in statistics The topic of missing data has gained considerable attention in recent decades. This new edition by two acknowledged experts on the subject offers an up-to-date account of practical methodology for handling missing data problems. Blending theory and application, authors Roderick Little and Donald Rubin review historical approaches to the subject and describe simple methods for multivariate analysis with missing values. They then provide a coherent theory for analysis of problems based on likelihoods derived from statistical models for the data and the missing data mechanism, and then they apply the theory to a wide range of important missing data problems. Statistical Analysis with Missing Data, Third Edition starts by introducing readers to the subject and approaches toward solving it. It looks at the patterns and mechanisms that create the missing data, as well as a taxonomy of missing data. It then goes on to examine missing data in experiments, before discussing complete-case and available-case analysis, including weighting methods. The new edition expands its coverage to include recent work on topics such as nonresponse in sample surveys, causal inference, diagnostic methods, and sensitivity analysis, among a host of other topics. An updated “classic” written by renowned authorities on the subject Features over 150 exercises (including many new ones) Covers recent work on important methods like multiple imputation, robust alternatives to weighting, and Bayesian methods Revises previous topics based on past student feedback and class experience Contains an updated and expanded bibliography The authors were awarded The Karl Pearson Prize in 2017 by the International Statistical Institute, for a research contribution that has had profound influence on statistical theory, methodology or applications. Their work "has been no less than defining and transforming." (ISI) Statistical Analysis with Missing Data, Third Edition is an ideal textbook for upper undergraduate and/or beginning graduate level students of the subject. It is also an excellent source of information for applied statisticians and practitioners in government and industry.
Author | : Garrett Fitzmaurice |
Publisher | : CRC Press |
Total Pages | : 633 |
Release | : 2008-08-11 |
Genre | : Mathematics |
ISBN | : 142001157X |
Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory
Author | : George A. F. Seber |
Publisher | : John Wiley & Sons |
Total Pages | : 718 |
Release | : 2009-09-25 |
Genre | : Mathematics |
ISBN | : 0470317310 |
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "In recent years many monographs have been published on specialized aspects of multivariate data-analysis–on cluster analysis, multidimensional scaling, correspondence analysis, developments of discriminant analysis, graphical methods, classification, and so on. This book is an attempt to review these newer methods together with the classical theory. . . . This one merits two cheers." –J. C. Gower, Department of Statistics Rothamsted Experimental Station, Harpenden, U.K. Review in Biometrics, June 1987 Multivariate Observations is a comprehensive sourcebook that treats data-oriented techniques as well as classical methods. Emphasis is on principles rather than mathematical detail, and coverage ranges from the practical problems of graphically representing high-dimensional data to the theoretical problems relating to matrices of random variables. Each chapter serves as a self-contained survey of a specific topic. The book includes many numerical examples and over 1,100 references.