On The Stability Of Periodic Solutions Of Nonlinear Dispersive Equations
Download On The Stability Of Periodic Solutions Of Nonlinear Dispersive Equations full books in PDF, epub, and Kindle. Read online free On The Stability Of Periodic Solutions Of Nonlinear Dispersive Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Jaime Angulo Pava |
Publisher | : American Mathematical Soc. |
Total Pages | : 272 |
Release | : 2009 |
Genre | : Mathematics |
ISBN | : 0821848976 |
This book provides a self-contained presentation of classical and new methods for studying wave phenomena that are related to the existence and stability of solitary and periodic travelling wave solutions for nonlinear dispersive evolution equations. Simplicity, concrete examples, and applications are emphasized throughout in order to make the material easily accessible. The list of classical nonlinear dispersive equations studied include Korteweg-de Vries, Benjamin-Ono, and Schrodinger equations. Many special Jacobian elliptic functions play a role in these examples. The author brings the reader to the forefront of knowledge about some aspects of the theory and motivates future developments in this fascinating and rapidly growing field. The book can be used as an instructive study guide as well as a reference by students and mature scientists interested in nonlinear wave phenomena.
Author | : Jean Bourgain |
Publisher | : Princeton University Press |
Total Pages | : 309 |
Release | : 2009-01-10 |
Genre | : Mathematics |
ISBN | : 1400827795 |
This collection of new and original papers on mathematical aspects of nonlinear dispersive equations includes both expository and technical papers that reflect a number of recent advances in the field. The expository papers describe the state of the art and research directions. The technical papers concentrate on a specific problem and the related analysis and are addressed to active researchers. The book deals with many topics that have been the focus of intensive research and, in several cases, significant progress in recent years, including hyperbolic conservation laws, Schrödinger operators, nonlinear Schrödinger and wave equations, and the Euler and Navier-Stokes equations.
Author | : Felipe Linares |
Publisher | : Springer Science & Business Media |
Total Pages | : 263 |
Release | : 2009-02-21 |
Genre | : Mathematics |
ISBN | : 0387848991 |
The aim of this textbook is to introduce the theory of nonlinear dispersive equations to graduate students in a constructive way. The first three chapters are dedicated to preliminary material, such as Fourier transform, interpolation theory and Sobolev spaces. The authors then proceed to use the linear Schrodinger equation to describe properties enjoyed by general dispersive equations. This information is then used to treat local and global well-posedness for the semi-linear Schrodinger equations. The end of each chapter contains recent developments and open problems, as well as exercises.
Author | : Christian Klein |
Publisher | : Springer Nature |
Total Pages | : 596 |
Release | : 2021 |
Genre | : Differential equations |
ISBN | : 3030914275 |
Nonlinear Dispersive Equations are partial differential equations that naturally arise in physical settings where dispersion dominates dissipation, notably hydrodynamics, nonlinear optics, plasma physics and Bose-Einstein condensates. The topic has traditionally been approached in different ways, from the perspective of modeling of physical phenomena, to that of the theory of partial differential equations, or as part of the theory of integrable systems. This monograph offers a thorough introduction to the topic, uniting the modeling, PDE and integrable systems approaches for the first time in book form. The presentation focuses on three "universal" families of physically relevant equations endowed with a completely integrable member: the Benjamin-Ono, Davey-Stewartson, and Kadomtsev-Petviashvili equations. These asymptotic models are rigorously derived and qualitative properties such as soliton resolution are studied in detail in both integrable and non-integrable models. Numerical simulations are presented throughout to illustrate interesting phenomena. By presenting and comparing results from different fields, the book aims to stimulate scientific interactions and attract new students and researchers to the topic. To facilitate this, the chapters can be read largely independently of each other and the prerequisites have been limited to introductory courses in PDE theory.
Author | : Guenter Leugering |
Publisher | : CRC Press |
Total Pages | : 417 |
Release | : 2005-05-27 |
Genre | : Mathematics |
ISBN | : 1420028316 |
The field of control theory in PDEs has broadened considerably as more realistic models have been introduced and investigated. This book presents a broad range of recent developments, new discoveries, and mathematical tools in the field. The authors discuss topics such as elasticity, thermo-elasticity, aero-elasticity, interactions between fluids a
Author | : Peter D. Miller |
Publisher | : Springer Nature |
Total Pages | : 530 |
Release | : 2019-11-14 |
Genre | : Mathematics |
ISBN | : 1493998064 |
This volume contains lectures and invited papers from the Focus Program on "Nonlinear Dispersive Partial Differential Equations and Inverse Scattering" held at the Fields Institute from July 31-August 18, 2017. The conference brought together researchers in completely integrable systems and PDE with the goal of advancing the understanding of qualitative and long-time behavior in dispersive nonlinear equations. The program included Percy Deift’s Coxeter lectures, which appear in this volume together with tutorial lectures given during the first week of the focus program. The research papers collected here include new results on the focusing nonlinear Schrödinger (NLS) equation, the massive Thirring model, and the Benjamin-Bona-Mahoney equation as dispersive PDE in one space dimension, as well as the Kadomtsev-Petviashvili II equation, the Zakharov-Kuznetsov equation, and the Gross-Pitaevskii equation as dispersive PDE in two space dimensions. The Focus Program coincided with the fiftieth anniversary of the discovery by Gardner, Greene, Kruskal and Miura that the Korteweg-de Vries (KdV) equation could be integrated by exploiting a remarkable connection between KdV and the spectral theory of Schrodinger's equation in one space dimension. This led to the discovery of a number of completely integrable models of dispersive wave propagation, including the cubic NLS equation, and the derivative NLS equation in one space dimension and the Davey-Stewartson, Kadomtsev-Petviashvili and Novikov-Veselov equations in two space dimensions. These models have been extensively studied and, in some cases, the inverse scattering theory has been put on rigorous footing. It has been used as a powerful analytical tool to study global well-posedness and elucidate asymptotic behavior of the solutions, including dispersion, soliton resolution, and semiclassical limits.
Author | : Bertrand Kibler |
Publisher | : Frontiers Media SA |
Total Pages | : 261 |
Release | : 2022-08-16 |
Genre | : Science |
ISBN | : 2889741117 |
Author | : Vladimir Georgiev |
Publisher | : Springer Nature |
Total Pages | : 246 |
Release | : 2022-12-02 |
Genre | : Mathematics |
ISBN | : 9811964343 |
This book provides a valuable collection of contributions by distinguished scholars presenting the state of the art and some of the most significant latest developments and future challenges in the field of dispersive partial differential equations. The material covers four major lines: (1) Long time behaviour of NLS-type equations, (2) probabilistic and nonstandard methods in the study of NLS equation, (3) dispersive properties for heat-, Schrödinger-, and Dirac-type flows, (4) wave and KdV-type equations. Across a variety of applications an amount of crucial mathematical tools are discussed, whose applicability and versatility goes beyond the specific models presented here. Furthermore, all contributions include updated and comparative literature.
Author | : Terence Tao |
Publisher | : American Mathematical Soc. |
Total Pages | : 392 |
Release | : |
Genre | : Mathematics |
ISBN | : 9780821889503 |
"Starting only with a basic knowledge of graduate real analysis and Fourier analysis, the text first presents basic nonlinear tools such as the bootstrap method and perturbation theory in the simpler context of nonlinear ODE, then introduces the harmonic analysis and geometric tools used to control linear dispersive PDE. These methods are then combined to study four model nonlinear dispersive equations. Through extensive exercises, diagrams, and informal discussion, the book gives a rigorous theoretical treatment of the material, the real-world intuition and heuristics that underlie the subject, as well as mentioning connections with other areas of PDE, harmonic analysis, and dynamical systems.".
Author | : Goong Chen |
Publisher | : CRC Press |
Total Pages | : 380 |
Release | : 2001-03-14 |
Genre | : Mathematics |
ISBN | : 0824745051 |
An examination of progress in mathematical control theory applications. It provides analyses of the influence and relationship of nonlinear partial differential equations to control systems and contains state-of-the-art reviews, including presentations from a conference co-sponsored by the National Science Foundation, the Institute of Mathematics and its Applications, the University of Minnesota, and Texas A&M University.