Stability and Transition in Shear Flows

Stability and Transition in Shear Flows
Author: Peter J. Schmid
Publisher: Springer Science & Business Media
Total Pages: 561
Release: 2012-12-06
Genre: Science
ISBN: 1461301858

A detailed look at some of the more modern issues of hydrodynamic stability, including transient growth, eigenvalue spectra, secondary instability. It presents analytical results and numerical simulations, linear and selected nonlinear stability methods. By including classical results as well as recent developments in the field of hydrodynamic stability and transition, the book can be used as a textbook for an introductory, graduate-level course in stability theory or for a special-topics fluids course. It is equally of value as a reference for researchers in the field of hydrodynamic stability theory or with an interest in recent developments in fluid dynamics. Stability theory has seen a rapid development over the past decade, this book includes such new developments as direct numerical simulations of transition to turbulence and linear analysis based on the initial-value problem.

Introduction to Hydrodynamic Stability

Introduction to Hydrodynamic Stability
Author: P. G. Drazin
Publisher: Cambridge University Press
Total Pages: 278
Release: 2002-09-09
Genre: Science
ISBN: 1316582876

Instability of flows and their transition to turbulence are widespread phenomena in engineering and the natural environment, and are important in applied mathematics, astrophysics, biology, geophysics, meteorology, oceanography and physics as well as engineering. This is a textbook to introduce these phenomena at a level suitable for a graduate course, by modelling them mathematically, and describing numerical simulations and laboratory experiments. The visualization of instabilities is emphasized, with many figures, and in references to more still and moving pictures. The relation of chaos to transition is discussed at length. Many worked examples and exercises for students illustrate the ideas of the text. Readers are assumed to be fluent in linear algebra, advanced calculus, elementary theory of ordinary differential equations, complex variables and the elements of fluid mechanics. The book is aimed at graduate students but will also be very useful for specialists in other fields.

Instability in Geophysical Flows

Instability in Geophysical Flows
Author: William D. Smyth
Publisher: Cambridge University Press
Total Pages: 342
Release: 2019-04-25
Genre: Science
ISBN: 1108670512

Instabilities are present in all natural fluids from rivers to atmospheres. This book considers the physical processes that generate instability. Part I describes the normal mode instabilities most important in geophysical applications, including convection, shear instability and baroclinic instability. Classical analytical approaches are covered, while also emphasising numerical methods, mechanisms such as internal wave resonance, and simple `rules of thumb' that permit assessment of instability quickly and intuitively. Part II introduces the cutting edge: nonmodal instabilities, the relationship between instability and turbulence, self-organised criticality, and advanced numerical techniques. Featuring numerous exercises and projects, the book is ideal for advanced students and researchers wishing to understand flow instability and apply it to their own research. It can be used to teach courses in oceanography, atmospheric science, coastal engineering, applied mathematics and environmental science. Exercise solutions and MATLAB® examples are provided online. Also available as Open Access on Cambridge Core.

Physics of Transitional Shear Flows

Physics of Transitional Shear Flows
Author: Andrey V. Boiko
Publisher: Springer Science & Business Media
Total Pages: 286
Release: 2011-09-15
Genre: Science
ISBN: 9400724985

Starting from fundamentals of classical stability theory, an overview is given of the transition phenomena in subsonic, wall-bounded shear flows. At first, the consideration focuses on elementary small-amplitude velocity perturbations of laminar shear layers, i.e. instability waves, in the simplest canonical configurations of a plane channel flow and a flat-plate boundary layer. Then the linear stability problem is expanded to include the effects of pressure gradients, flow curvature, boundary-layer separation, wall compliance, etc. related to applications. Beyond the amplification of instability waves is the non-modal growth of local stationary and non-stationary shear flow perturbations which are discussed as well. The volume continues with the key aspect of the transition process, that is, receptivity of convectively unstable shear layers to external perturbations, summarizing main paths of the excitation of laminar flow disturbances. The remainder of the book addresses the instability phenomena found at late stages of transition. These include secondary instabilities and nonlinear features of boundary-layer perturbations that lead to the final breakdown to turbulence. Thus, the reader is provided with a step-by-step approach that covers the milestones and recent advances in the laminar-turbulent transition. Special aspects of instability and transition are discussed through the book and are intended for research scientists, while the main target of the book is the student in the fundamentals of fluid mechanics. Computational guides, recommended exercises, and PowerPoint multimedia notes based on results of real scientific experiments supplement the monograph. These are especially helpful for the neophyte to obtain a solid foundation in hydrodynamic stability. To access the supplementary material go to extras.springer.com and type in the ISBN for this volume.

Unsteady Combustor Physics

Unsteady Combustor Physics
Author: Tim C. Lieuwen
Publisher: Cambridge University Press
Total Pages: 427
Release: 2012-08-27
Genre: Technology & Engineering
ISBN: 1139576836

Developing clean, sustainable energy systems is a pre-eminent issue of our time. Most projections indicate that combustion-based energy conversion systems will continue to be the predominant approach for the majority of our energy usage. Unsteady combustor issues present the key challenge associated with the development of clean, high-efficiency combustion systems such as those used for power generation, heating or propulsion applications. This comprehensive study is unique, treating the subject in a systematic manner. Although this book focuses on unsteady combusting flows, it places particular emphasis on the system dynamics that occur at the intersection of the combustion, fluid mechanics and acoustic disciplines. Individuals with a background in fluid mechanics and combustion will find this book to be an incomparable study that synthesises these fields into a coherent understanding of the intrinsically unsteady processes in combustors.

The Structure of Turbulent Shear Flow

The Structure of Turbulent Shear Flow
Author: A. A. R. Townsend
Publisher: Cambridge University Press
Total Pages: 450
Release: 1976
Genre: Mathematics
ISBN: 9780521298193

Develops a physical theory from the mass of experimental results, with revisions to reflect advances of recent years.

Physical Processes in Estuaries

Physical Processes in Estuaries
Author: Job Dronkers
Publisher: Springer Science & Business Media
Total Pages: 556
Release: 2012-12-06
Genre: Science
ISBN: 3642736912

In Physical Processes in Estuaries the present day knowledge of the physics of transport phenomena in estuaries and their mathematical treatment is summarized: It is divided into following parts: - Water movements in estuaries - Estuarine fronts and river plumes - Internal waves and interface stability - Fine sediment transport, aggregation of particles, settling velocity of mud flocs - Sedimentation and erosion of fine sediments. For each topic an up-to-date review and recommendations for future research are given, followed by results of original studies. Since estuarine environments are the first to be threatened by urbanization and industrial exploitation this book is an important tool for students and researchers of environmental problems as well as for consultants and water authorities.

Fluid Mechanics

Fluid Mechanics
Author: Pijush K. Kundu
Publisher: Academic Press
Total Pages: 919
Release: 2012
Genre: Science
ISBN: 0123821002

Suitable for both a first or second course in fluid mechanics at the graduate or advanced undergraduate level, this book presents the study of how fluids behave and interact under various forces and in various applied situations - whether in the liquid or gaseous state or both.

Buoyancy Effects in Fluids

Buoyancy Effects in Fluids
Author: John Stewart Turner
Publisher: Cambridge University Press
Total Pages: 416
Release: 1973
Genre: Mathematics
ISBN: 9780521297264

The phenomena treated in this book all depend on the action of gravity on small density differences in a non-rotating fluid. The author gives a connected account of the various motions which can be driven or influenced by buoyancy forces in a stratified fluid, including internal waves, turbulent shear flows and buoyant convection. This excellent introduction to a rapidly developing field, first published in 1973, can be used as the basis of graduate courses in university departments of meteorology, oceanography and various branches of engineering. This edition is reprinted with corrections, and extra references have been added to allow readers to bring themselves up to date on specific topics. Professor Turner is a physicist with a special interest in laboratory modelling of small-scale geophysical processes. An important feature is the superb illustration of the text with many fine photographs of laboratory experiments and natural phenomena.