On The Invariant Subspace Problem
Download On The Invariant Subspace Problem full books in PDF, epub, and Kindle. Read online free On The Invariant Subspace Problem ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Isabelle Chalendar |
Publisher | : |
Total Pages | : 298 |
Release | : 2011 |
Genre | : MATHEMATICS |
ISBN | : 9781139128605 |
Presents work on the invariant subspace problem, a major unsolved problem in operator theory.
Author | : Israel Gohberg |
Publisher | : SIAM |
Total Pages | : 706 |
Release | : 2006-03-01 |
Genre | : Mathematics |
ISBN | : 089871608X |
This unique book addresses advanced linear algebra using invariant subspaces as the central notion and main tool. It comprehensively covers geometrical, algebraic, topological, and analytic properties of invariant subspaces, laying clear mathematical foundations for linear systems theory with a thorough treatment of analytic perturbation theory for matrix functions.
Author | : Peter D. Lax |
Publisher | : John Wiley & Sons |
Total Pages | : 451 |
Release | : 2014-08-28 |
Genre | : Mathematics |
ISBN | : 1118626745 |
Includes sections on the spectral resolution and spectral representation of self adjoint operators, invariant subspaces, strongly continuous one-parameter semigroups, the index of operators, the trace formula of Lidskii, the Fredholm determinant, and more. Assumes prior knowledge of Naive set theory, linear algebra, point set topology, basic complex variable, and real variables. Includes an appendix on the Riesz representation theorem.
Author | : Isabelle Chalendar |
Publisher | : Cambridge University Press |
Total Pages | : 298 |
Release | : 2011-08-18 |
Genre | : Mathematics |
ISBN | : 1139503294 |
One of the major unsolved problems in operator theory is the fifty-year-old invariant subspace problem, which asks whether every bounded linear operator on a Hilbert space has a nontrivial closed invariant subspace. This book presents some of the major results in the area, including many that were derived within the past few years and cannot be found in other books. Beginning with a preliminary chapter containing the necessary pure mathematical background, the authors present a variety of powerful techniques, including the use of the operator-valued Poisson kernel, various forms of the functional calculus, Hardy spaces, fixed point theorems, minimal vectors, universal operators and moment sequences. The subject is presented at a level accessible to postgraduate students, as well as established researchers. It will be of particular interest to those who study linear operators and also to those who work in other areas of pure mathematics.
Author | : Henry Helson |
Publisher | : Academic Press |
Total Pages | : 143 |
Release | : 2013-10-22 |
Genre | : Mathematics |
ISBN | : 1483261522 |
Lectures on Invariant Subspaces grew out of a series of lectures given gave at the University of Uppsala in the spring of 1962, and again in Berkeley the following semester. Since the subject is rather loosely defined the lecture style seemed appropriate also for this written version. The book is written for a graduate student who knows a little, but not necessarily very much, about analytic functions and about Hilbert space. The book contains 11 lectures and begins with a discussion of analytic functions. This is followed by lectures covering invariant subspaces, individual theorems, invariant subspaces in Lp, invariant subspaces in the line, and analytic vector functions. Subsequent lectures cover vectorial function theory, inner functions, range functions, and factoring of operator functions.
Author | : Barbara MacCluer |
Publisher | : Springer Science & Business Media |
Total Pages | : 212 |
Release | : 2008-10-20 |
Genre | : Mathematics |
ISBN | : 0387855297 |
Functional analysis arose in the early twentieth century and gradually, conquering one stronghold after another, became a nearly universal mathematical doctrine, not merely a new area of mathematics, but a new mathematical world view. Its appearance was the inevitable consequence of the evolution of all of nineteenth-century mathematics, in particular classical analysis and mathematical physics. Its original basis was formed by Cantor’s theory of sets and linear algebra. Its existence answered the question of how to state general principles of a broadly interpreted analysis in a way suitable for the most diverse situations. A.M. Vershik ([45], p. 438). This text evolved from the content of a one semester introductory course in fu- tional analysis that I have taught a number of times since 1996 at the University of Virginia. My students have included ?rst and second year graduate students prep- ing for thesis work in analysis, algebra, or topology, graduate students in various departments in the School of Engineering and Applied Science, and several und- graduate mathematics or physics majors. After a ?rst draft of the manuscript was completed, it was also used for an independent reading course for several und- graduates preparing for graduate school.
Author | : Heydar Radjavi |
Publisher | : Springer Science & Business Media |
Total Pages | : 231 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3642655742 |
In recent years there has been a large amount of work on invariant subspaces, motivated by interest in the structure of non-self-adjoint of the results have been obtained in operators on Hilbert space. Some the context of certain general studies: the theory of the characteristic operator function, initiated by Livsic; the study of triangular models by Brodskii and co-workers; and the unitary dilation theory of Sz. Nagy and Foia!? Other theorems have proofs and interest independent of any particular structure theory. Since the leading workers in each of the structure theories have written excellent expositions of their work, (cf. Sz.-Nagy-Foia!? [1], Brodskii [1], and Gohberg-Krein [1], [2]), in this book we have concentrated on results independent of these theories. We hope that we have given a reasonably complete survey of such results and suggest that readers consult the above references for additional information. The table of contents indicates the material covered. We have restricted ourselves to operators on separable Hilbert space, in spite of the fact that most of the theorems are valid in all Hilbert spaces and many hold in Banach spaces as well. We felt that this restriction was sensible since it eases the exposition and since the separable-Hilbert space case of each of the theorems is generally the most interesting and potentially the most useful case.
Author | : B. Beauzamy |
Publisher | : Elsevier |
Total Pages | : 373 |
Release | : 1988-10-01 |
Genre | : Mathematics |
ISBN | : 0080960898 |
This monograph only requires of the reader a basic knowledge of classical analysis: measure theory, analytic functions, Hilbert spaces, functional analysis. The book is self-contained, except for a few technical tools, for which precise references are given.Part I starts with finite-dimensional spaces and general spectral theory. But very soon (Chapter III), new material is presented, leading to new directions for research. Open questions are mentioned here. Part II concerns compactness and its applications, not only spectral theory for compact operators (Invariant Subspaces and Lomonossov's Theorem) but also duality between the space of nuclear operators and the space of all operators on a Hilbert space, a result which is seldom presented. Part III contains Algebra Techniques: Gelfand's Theory, and application to Normal Operators. Here again, directions for research are indicated. Part IV deals with analytic functions, and contains a few new developments. A simplified, operator-oriented, version is presented. Part V presents dilations and extensions: Nagy-Foias dilation theory, and the author's work about C1-contractions. Part VI deals with the Invariant Subspace Problem, with positive results and counter-examples.In general, much new material is presented. On the Invariant Subspace Problem, the level of research is reached, both in the positive and negative directions.
Author | : Carl M. Pearcy |
Publisher | : American Mathematical Soc. |
Total Pages | : 254 |
Release | : 1974-12-31 |
Genre | : Mathematics |
ISBN | : 082181513X |
Deals with various aspects of the theory of bounded linear operators on Hilbert space. This book offers information on weighted shift operators with scalar weights.
Author | : Carlos S. Kubrusly |
Publisher | : Springer Science & Business Media |
Total Pages | : 152 |
Release | : 1997-08-19 |
Genre | : Mathematics |
ISBN | : 9780817639921 |
By a Hilbert-space operator we mean a bounded linear transformation be tween separable complex Hilbert spaces. Decompositions and models for Hilbert-space operators have been very active research topics in operator theory over the past three decades. The main motivation behind them is the in variant subspace problem: does every Hilbert-space operator have a nontrivial invariant subspace? This is perhaps the most celebrated open question in op erator theory. Its relevance is easy to explain: normal operators have invariant subspaces (witness: the Spectral Theorem), as well as operators on finite dimensional Hilbert spaces (witness: canonical Jordan form). If one agrees that each of these (i. e. the Spectral Theorem and canonical Jordan form) is important enough an achievement to dismiss any further justification, then the search for nontrivial invariant subspaces is a natural one; and a recalcitrant one at that. Subnormal operators have nontrivial invariant subspaces (extending the normal branch), as well as compact operators (extending the finite-dimensional branch), but the question remains unanswered even for equally simple (i. e. simple to define) particular classes of Hilbert-space operators (examples: hyponormal and quasinilpotent operators). Yet the invariant subspace quest has certainly not been a failure at all, even though far from being settled. The search for nontrivial invariant subspaces has undoubtly yielded a lot of nice results in operator theory, among them, those concerning decompositions and models for Hilbert-space operators. This book contains nine chapters.