On The Construction Of Gap Functions For Variational Inequalities Via Conjugate Duality
Download On The Construction Of Gap Functions For Variational Inequalities Via Conjugate Duality full books in PDF, epub, and Kindle. Read online free On The Construction Of Gap Functions For Variational Inequalities Via Conjugate Duality ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Radu Ioan Bot |
Publisher | : Springer Science & Business Media |
Total Pages | : 408 |
Release | : 2009-08-12 |
Genre | : Mathematics |
ISBN | : 3642028861 |
This book presents fundamentals and comprehensive results regarding duality for scalar, vector and set-valued optimization problems in a general setting. One chapter is exclusively consecrated to the scalar and vector Wolfe and Mond-Weir duality schemes.
Author | : Altannar Chinchuluun |
Publisher | : Springer Science & Business Media |
Total Pages | : 351 |
Release | : 2012-11-28 |
Genre | : Mathematics |
ISBN | : 1461451310 |
Optimization, simulation and control play an increasingly important role in science and industry. Because of their numerous applications in various disciplines, research in these areas is accelerating at a rapid pace. This volume brings together the latest developments in these areas of research as well as presents applications of these results to a wide range of real-world problems. The book is composed of invited contributions by experts from around the world who work to develop and apply new optimization, simulation and control techniques either at a theoretical level or in practice. Some key topics presented include: equilibrium problems, multi-objective optimization, variational inequalities, stochastic processes, numerical analysis, optimization in signal processing, and various other interdisciplinary applications. This volume can serve as a useful resource for researchers, practitioners, and advanced graduate students of mathematics and engineering working in research areas where results in optimization, simulation and control can be applied.
Author | : |
Publisher | : |
Total Pages | : 532 |
Release | : 2007 |
Genre | : Convex domains |
ISBN | : |
Author | : R. Tyrrell Rockafellar |
Publisher | : SIAM |
Total Pages | : 80 |
Release | : 1974-01-01 |
Genre | : Technology & Engineering |
ISBN | : 9781611970524 |
Provides a relatively brief introduction to conjugate duality in both finite- and infinite-dimensional problems. An emphasis is placed on the fundamental importance of the concepts of Lagrangian function, saddle-point, and saddle-value. General examples are drawn from nonlinear programming, approximation, stochastic programming, the calculus of variations, and optimal control.
Author | : |
Publisher | : |
Total Pages | : 984 |
Release | : 2008 |
Genre | : Mathematics |
ISBN | : |
Author | : R. Tyrrell Rockafellar |
Publisher | : Springer Science & Business Media |
Total Pages | : 747 |
Release | : 2009-06-26 |
Genre | : Mathematics |
ISBN | : 3642024319 |
From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.
Author | : Stephen P. Boyd |
Publisher | : Cambridge University Press |
Total Pages | : 744 |
Release | : 2004-03-08 |
Genre | : Business & Economics |
ISBN | : 9780521833783 |
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.
Author | : Jonathan Borwein |
Publisher | : Springer Science & Business Media |
Total Pages | : 316 |
Release | : 2010-05-05 |
Genre | : Mathematics |
ISBN | : 0387312560 |
Optimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This book aims to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. Each section concludes with an often extensive set of optional exercises. This new edition adds material on semismooth optimization, as well as several new proofs.
Author | : Daniel Liberzon |
Publisher | : Princeton University Press |
Total Pages | : 255 |
Release | : 2012 |
Genre | : Mathematics |
ISBN | : 0691151873 |
This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control
Author | : F. Giannessi |
Publisher | : Springer Science & Business Media |
Total Pages | : 522 |
Release | : 2013-12-01 |
Genre | : Mathematics |
ISBN | : 1461302994 |
The book deals with the mathematical theory of vector variational inequalities with special reference to equilibrium problems. Such models have been introduced recently to study new problems from mechanics, structural engineering, networks, and industrial management, and to revisit old ones. The common feature of these problems is that given by the presence of concurrent objectives and by the difficulty of identifying a global functional (like energy) to be extremized. The vector variational inequalities have the advantage of both the variational ones and vector optimization which are found as special cases. Among several applications, the equilibrium flows on a network receive special attention. Audience: The book is addressed to academic researchers as well as industrial ones, in the fields of mathematics, engineering, mathematical programming, control theory, operations research, computer science, and economics.