Duality in Vector Optimization

Duality in Vector Optimization
Author: Radu Ioan Bot
Publisher: Springer Science & Business Media
Total Pages: 408
Release: 2009-08-12
Genre: Mathematics
ISBN: 3642028861

This book presents fundamentals and comprehensive results regarding duality for scalar, vector and set-valued optimization problems in a general setting. One chapter is exclusively consecrated to the scalar and vector Wolfe and Mond-Weir duality schemes.

Optimization, Simulation, and Control

Optimization, Simulation, and Control
Author: Altannar Chinchuluun
Publisher: Springer Science & Business Media
Total Pages: 351
Release: 2012-11-28
Genre: Mathematics
ISBN: 1461451310

Optimization, simulation and control play an increasingly important role in science and industry. Because of their numerous applications in various disciplines, research in these areas is accelerating at a rapid pace. This volume brings together the latest developments in these areas of research as well as presents applications of these results to a wide range of real-world problems. The book is composed of invited contributions by experts from around the world who work to develop and apply new optimization, simulation and control techniques either at a theoretical level or in practice. Some key topics presented include: equilibrium problems, multi-objective optimization, variational inequalities, stochastic processes, numerical analysis, optimization in signal processing, and various other interdisciplinary applications. This volume can serve as a useful resource for researchers, practitioners, and advanced graduate students of mathematics and engineering working in research areas where results in optimization, simulation and control can be applied.

Conjugate Duality and Optimization

Conjugate Duality and Optimization
Author: R. Tyrrell Rockafellar
Publisher: SIAM
Total Pages: 80
Release: 1974-01-01
Genre: Technology & Engineering
ISBN: 9781611970524

Provides a relatively brief introduction to conjugate duality in both finite- and infinite-dimensional problems. An emphasis is placed on the fundamental importance of the concepts of Lagrangian function, saddle-point, and saddle-value. General examples are drawn from nonlinear programming, approximation, stochastic programming, the calculus of variations, and optimal control.

Variational Analysis

Variational Analysis
Author: R. Tyrrell Rockafellar
Publisher: Springer Science & Business Media
Total Pages: 747
Release: 2009-06-26
Genre: Mathematics
ISBN: 3642024319

From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.

Convex Optimization

Convex Optimization
Author: Stephen P. Boyd
Publisher: Cambridge University Press
Total Pages: 744
Release: 2004-03-08
Genre: Business & Economics
ISBN: 9780521833783

Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.

Convex Analysis and Nonlinear Optimization

Convex Analysis and Nonlinear Optimization
Author: Jonathan Borwein
Publisher: Springer Science & Business Media
Total Pages: 316
Release: 2010-05-05
Genre: Mathematics
ISBN: 0387312560

Optimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This book aims to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. Each section concludes with an often extensive set of optional exercises. This new edition adds material on semismooth optimization, as well as several new proofs.

Calculus of Variations and Optimal Control Theory

Calculus of Variations and Optimal Control Theory
Author: Daniel Liberzon
Publisher: Princeton University Press
Total Pages: 255
Release: 2012
Genre: Mathematics
ISBN: 0691151873

This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control

Vector Variational Inequalities and Vector Equilibria

Vector Variational Inequalities and Vector Equilibria
Author: F. Giannessi
Publisher: Springer Science & Business Media
Total Pages: 522
Release: 2013-12-01
Genre: Mathematics
ISBN: 1461302994

The book deals with the mathematical theory of vector variational inequalities with special reference to equilibrium problems. Such models have been introduced recently to study new problems from mechanics, structural engineering, networks, and industrial management, and to revisit old ones. The common feature of these problems is that given by the presence of concurrent objectives and by the difficulty of identifying a global functional (like energy) to be extremized. The vector variational inequalities have the advantage of both the variational ones and vector optimization which are found as special cases. Among several applications, the equilibrium flows on a network receive special attention. Audience: The book is addressed to academic researchers as well as industrial ones, in the fields of mathematics, engineering, mathematical programming, control theory, operations research, computer science, and economics.