Generalized Ordinary Differential Equations in Abstract Spaces and Applications

Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Author: Everaldo M. Bonotto
Publisher: John Wiley & Sons
Total Pages: 514
Release: 2021-09-15
Genre: Mathematics
ISBN: 1119654939

GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS IN ABSTRACT SPACES AND APPLICATIONS Explore a unified view of differential equations through the use of the generalized ODE from leading academics in mathematics Generalized Ordinary Differential Equations in Abstract Spaces and Applications delivers a comprehensive treatment of new results of the theory of Generalized ODEs in abstract spaces. The book covers applications to other types of differential equations, including Measure Functional Differential Equations (measure FDEs). It presents a uniform collection of qualitative results of Generalized ODEs and offers readers an introduction to several theories, including ordinary differential equations, impulsive differential equations, functional differential equations, dynamical equations on time scales, and more. Throughout the book, the focus is on qualitative theory and on corresponding results for other types of differential equations, as well as the connection between Generalized Ordinary Differential Equations and impulsive differential equations, functional differential equations, measure differential equations and dynamic equations on time scales. The book’s descriptions will be of use in many mathematical contexts, as well as in the social and natural sciences. Readers will also benefit from the inclusion of: A thorough introduction to regulated functions, including their basic properties, equiregulated sets, uniform convergence, and relatively compact sets An exploration of the Kurzweil integral, including its definitions and basic properties A discussion of measure functional differential equations, including impulsive measure FDEs The interrelationship between generalized ODEs and measure FDEs A treatment of the basic properties of generalized ODEs, including the existence and uniqueness of solutions, and prolongation and maximal solutions Perfect for researchers and graduate students in Differential Equations and Dynamical Systems, Generalized Ordinary Differential Equations in Abstract Spaces and App­lications will also earn a place in the libraries of advanced undergraduate students taking courses in the subject and hoping to move onto graduate studies.

Stability Problems

Stability Problems
Author: L. Salvadori
Publisher: Springer Science & Business Media
Total Pages: 208
Release: 2011-06-04
Genre: Mathematics
ISBN: 3642109497

P. Habets: Stabilité asymptotique pour des problèmes de perturbations singulières.- J.K. Hale: Stability of linear systems with delays.- V. Lakshmikantham: Stability and asymptotic behaviour of solutions of differential equations in a Banach space.- P. Negrini: On a definition of total stability for continuous or discrete dynamical systems.-N. Rouche: Théorie de la stabilité dans les équations différentielles ordinaires.- E.O. Roxin: Stability and differential games.

nonlinear analysis and applications

nonlinear analysis and applications
Author: Lakshmikantham
Publisher: CRC Press
Total Pages: 678
Release: 2020-11-26
Genre: Mathematics
ISBN: 1000147037

This book attempts to put together the works of a wide range of mathematical scientists. It consists of the proceedings of the Seventh Conference on "Nonlinear Analysis and Applications" including papers that were delivered as invited talks and research reports.

Method of Variation of Parameters for Dynamic Systems

Method of Variation of Parameters for Dynamic Systems
Author: V. Lakshmikantham
Publisher: Routledge
Total Pages: 326
Release: 2019-09-10
Genre: Mathematics
ISBN: 135143196X

Method of Variation of Parameters for Dynamic Systems presents a systematic and unified theory of the development of the theory of the method of variation of parameters, its unification with Lyapunov's method and typical applications of these methods. No other attempt has been made to bring all the available literature into one volume. This book is a clear exposition of this important topic in control theory, which is not covered by any other text. Such an exposition finally enables the comparison and contrast of the theory and the applications, thus facilitating further development in this fascinating field.

Functional Analysis, Sobolev Spaces and Partial Differential Equations

Functional Analysis, Sobolev Spaces and Partial Differential Equations
Author: Haim Brezis
Publisher: Springer Science & Business Media
Total Pages: 600
Release: 2010-11-02
Genre: Mathematics
ISBN: 0387709142

This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.

Almost Periodic Solutions of Differential Equations in Banach Spaces

Almost Periodic Solutions of Differential Equations in Banach Spaces
Author: Yoshiyuki Hino
Publisher: CRC Press
Total Pages: 276
Release: 2001-10-25
Genre: Mathematics
ISBN: 9780415272667

This monograph presents recent developments in spectral conditions for the existence of periodic and almost periodic solutions of inhomogenous equations in Banach Spaces. Many of the results represent significant advances in this area. In particular, the authors systematically present a new approach based on the so-called evolution semigroups with an original decomposition technique. The book also extends classical techniques, such as fixed points and stability methods, to abstract functional differential equations with applications to partial functional differential equations. Almost Periodic Solutions of Differential Equations in Banach Spaces will appeal to anyone working in mathematical analysis.