Masters Theses in the Pure and Applied Sciences

Masters Theses in the Pure and Applied Sciences
Author: W. H. Shafer
Publisher: Springer Science & Business Media
Total Pages: 311
Release: 2012-12-06
Genre: Science
ISBN: 1468442295

Masters Theses in the Pure and Applied Sciences was first conceived, published, and dis seminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS) * at Purdue University in 1957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dissemination phases of the ac tivity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all concerned if the printing and distribution of the volume were handled by an international publishing. house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Corporation of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 25 (thesis year 1980) a total of 10,308 theses titles from 27 Canadian and 214 United States universities. We are sure that this broader base for theses titles reported will greatly enhance the value of this important annual reference work. While Volume 25 reports theses submitted in 1980, on occasion, certain universities do report theses submitted in previous years but not reported at the time.

核子科學

核子科學
Author:
Publisher:
Total Pages: 636
Release: 1984
Genre: Nuclear physics
ISBN:

Issued jointly with Yen chiu yüan, kuo li ch'ing hua ta hsüeh, 1955-

Linear and Non-linear Stability Analysis in Boiling Water Reactors

Linear and Non-linear Stability Analysis in Boiling Water Reactors
Author: Alfonso Prieto Guerrero
Publisher: Woodhead Publishing
Total Pages: 474
Release: 2018-10-15
Genre: Business & Economics
ISBN: 0081024460

Linear and Non-Linear Stability Analysis in Boiling Water Reactors: The Design of Real-Time Stability Monitors presents a thorough analysis of the most innovative BWR reactors and stability phenomena in one accessible resource. The book presents a summary of existing literature on BWRs to give early career engineers and researchers a solid background in the field, as well as the latest research on stability phenomena (propagation phenomena in BWRs), nuclear power monitors, and advanced computer systems used to for the prediction of stability. It also emphasizes the importance of BWR technology and embedded neutron monitoring systems (APRMs and LPRMs), and introduces non-linear stability parameters that can be used for the onset detection of instabilities in BWRs. Additionally, the book details the scope, advantages, and disadvantages of multiple advanced linear and non linear signal processing methods, and includes analytical case studies of existing plants. This combination makes Linear and Non-Linear Stability Analysis in Boiling Water Reactors a valuable resource for nuclear engineering students focusing on linear and non-linear analysis, as well as for those working and researching in a nuclear power capacity looking to implement stability methods and estimate decay ratios using non-linear techniques. - Explores the nuclear stability of Boiling Water Reactors based on linear and non-linear models - Evaluates linear signal processing methods such as autoregressive models, Fourier-based methods, and wavelets to calculate decay ratios - Proposes novel non-linear signal analysis techniques linked to non-linear stability indicators - Includes case studies of various existing nuclear power plants as well as mathematical models and simulations

Application of Noise-analysis Methods to Monitor Stability of Boiling Water Reactors

Application of Noise-analysis Methods to Monitor Stability of Boiling Water Reactors
Author:
Publisher:
Total Pages:
Release: 1981
Genre:
ISBN:

The dynamic stability of Boiling Water Reactors (BWR's) is influenced by the reactor control system and its interaction with external load demand, channel thermal hydraulic properties, and coupled neutronic-thermal-hydraulic dynamics. The latter aspect of BWR stability which is affected by void reactivity feedback, coolant flow rate and fuel-to-coolant heat transfer characteristics is studied in this paper using the normal fluctuation data. The feasibility of overall core stability trend monitoring using neutron noise and the relatonship between stability and two-phase flow velocity in a fuel channel are studied. Time series modeling of the average power range monitor (APRM) detector signal, and bivariate analysis of adjacent local power range monitor (LPRM) detector signals are used to determine the neutron impulse response, spectral characteristics and two-phase flow velocity using data from an operating BWR. The results of analysis show that the APRM noise signal can be used to monitor changes in the closed-loop output stability of BWRs (but not the absolute stability as determined by the reactivity-to-neutron power transfer function), and that a positive correlation exists between stability and two-phase flow velocity in a fuel channel.