On Hilbert Type And Hardy Type Integral Inequalities And Applications
Download On Hilbert Type And Hardy Type Integral Inequalities And Applications full books in PDF, epub, and Kindle. Read online free On Hilbert Type And Hardy Type Integral Inequalities And Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Bicheng Yang |
Publisher | : Springer Nature |
Total Pages | : 152 |
Release | : 2019-09-25 |
Genre | : Mathematics |
ISBN | : 3030292681 |
This book is aimed toward graduate students and researchers in mathematics, physics and engineering interested in the latest developments in analytic inequalities, Hilbert-Type and Hardy-Type integral inequalities, and their applications. Theories, methods, and techniques of real analysis and functional analysis are applied to equivalent formulations of Hilbert-type inequalities, Hardy-type integral inequalities as well as their parameterized reverses. Special cases of these integral inequalities across an entire plane are considered and explained. Operator expressions with the norm and some particular analytic inequalities are detailed through several lemmas and theorems to provide an extensive account of inequalities and operators.
Author | : Bicheng Yang |
Publisher | : Springer |
Total Pages | : 145 |
Release | : 2019-09-30 |
Genre | : Mathematics |
ISBN | : 9783030292676 |
This book is aimed toward graduate students and researchers in mathematics, physics and engineering interested in the latest developments in analytic inequalities, Hilbert-Type and Hardy-Type integral inequalities, and their applications. Theories, methods, and techniques of real analysis and functional analysis are applied to equivalent formulations of Hilbert-type inequalities, Hardy-type integral inequalities as well as their parameterized reverses. Special cases of these integral inequalities across an entire plane are considered and explained. Operator expressions with the norm and some particular analytic inequalities are detailed through several lemmas and theorems to provide an extensive account of inequalities and operators.
Author | : Bicheng Yang |
Publisher | : Scientific Research Publishing, Inc. USA |
Total Pages | : 162 |
Release | : 2022-07-19 |
Genre | : Antiques & Collectibles |
ISBN | : 1649974094 |
Hilbert-type inequalities including Hilbert’s inequalities (built-in 1908), Hardy-Hilbert-type inequalities (built-in 1934), and Yang-Hilbert-type inequalities (built-in 1998) played an important role in analysis and their applications, which are mainly divided into three classes of integral, discrete and half-discrete. In recent twenty years, there are many advances in research on Hilbert-type inequalities, especially in Yang-Hilbert-type inequalities. In this book, applying the weight functions, the parameterized idea, and the techniques of real analysis and functional analysis, we provide three kinds of Hilbert-type and Hardy-type integral inequalities in the whole plane as well as their reverses with parameters, which are extensions of Hilbert-type and Hardy-type integral inequalities in the first quarter. The equivalent forms, the operator expressions, and some equivalent statements of the best possible constant factors related to several parameters are considered. The lemmas and theorems provide an extensive account of these kinds of integral inequalities and operators. There are seven chapters in this book. In Chapter 1, we introduce some recent developments of Hilbert-type integral, discrete, and half-discrete inequalities. In Chapters 2-3, by using the weight function and real analysis, some new Hilbert-type and Hardy-type integral inequalities in the whole plane with the non-homogeneous kernel are given, and the cases of the homogeneous kernel are deduced. The equivalent forms and some equivalent statements of the best possible constant factors related to several parameters are obtained. We also consider the operator expressions as well as the reverses. In Chapters 4-7, the other two kinds of Hilbert-type and Hardy-type integral inequalities in the whole plane are also considered. We hope that this monograph will prove to be useful especially to graduate students of mathematics, physics, and engineering sciences.
Author | : Bicheng Yang |
Publisher | : World Scientific |
Total Pages | : 203 |
Release | : 2023-02-13 |
Genre | : Mathematics |
ISBN | : 9811267111 |
Hilbert-type inequalities, including Hilbert's inequalities proved in 1908, Hardy-Hilbert-type inequalities proved in 1934, and Yang-Hilbert-type inequalities first proved around 1998, play an important role in analysis and its applications. These inequalities are mainly divided in three classes: integral, discrete and half-discrete. During the last twenty years, there have been many research advances on Hilbert-type inequalities, and especially on Yang-Hilbert-type inequalities.In the present monograph, applying weight functions, the idea of parametrization as well as techniques of real analysis and functional analysis, we prove some new Hilbert-type integral inequalities as well as their reverses with parameters. These inequalities constitute extensions of the well-known Hardy-Hilbert integral inequality. The equivalent forms and some equivalent statements of the best possible constant factors associated with several parameters are considered. Furthermore, we also obtain the operator expressions with the norm and some particular inequalities involving the Riemann-zeta function and the Hurwitz-zeta function. In the form of applications, by means of the beta function and the gamma function, we use the extended Hardy-Hilbert integral inequalities to consider several Hilbert-type integral inequalities involving derivative functions and upper limit functions. In the last chapter, we consider the case of Hardy-type integral inequalities. The lemmas and theorems within provide an extensive account of these kinds of integral inequalities and operators.Efforts have been made for this monograph hopefully to be useful, especially to graduate students of mathematics, physics and engineering, as well as researchers in these domains.
Author | : CV-Bicheng Yang |
Publisher | : Scientific Research Publishing, Inc. USA |
Total Pages | : 189 |
Release | : 2023-12-22 |
Genre | : Antiques & Collectibles |
ISBN | : 1649977778 |
In this book, applying the weight functions, the idea of introduced parameters and the techniques of real analysis and functional analysis, we provide a new kind of half-discrete Hilbert-type inequalities named in Mulholland-type inequality. Then, we consider its several applications involving the derivative function of higher-order or the multiple upper limit function. Some new reverses with the partial sums are obtained. We also consider some half-discrete Hardy-Hilbert’s inequalities with two internal variables involving one derivative function or one upper limit function in the last chapter. The lemmas and theorems provide an extensive account of these kinds of half-discrete inequalities and operators.
Author | : Bicheng Yang |
Publisher | : Bentham Science Publishers |
Total Pages | : 130 |
Release | : 2010-04-02 |
Genre | : Mathematics |
ISBN | : 1608050556 |
"Hilbert-type integral inequalities, including the well known Hilbert's integral inequality published in 1908, are important in analysis and its applications. This well organized handbook covers the newest methods of weight functions and most important rec"
Author | : Bicheng Yang |
Publisher | : Scientific Research Publishing, Inc. USA |
Total Pages | : 410 |
Release | : 2020-09-25 |
Genre | : Antiques & Collectibles |
ISBN | : 1618969498 |
Hilbert-type inequalities include Hilbert's inequalities, Hardy-Hilbert-type inequalities and Yang-Hilbert-type inequalities, which are important in Analysis and its applications.They are mainly divided three kinds of integral, discrete and half-discrete.In recent twenty years, there are many advances in research on Hilbert-type inequalities,especially in Yang-Hilbert-type inequalities. In this book, by using the way of weight functions, the parameterized idea and technique of Real and Functional Analysis, we introduce multi-parameters and provide three kinds of double Hilbert-type inequalities with the general measurable kernels and the best possible constant factors. The equivalent forms, the reverses and some particular inequalities are obtained. Furthermore, the operator expressions with the norm, a large number of examples on the norm, some composition formulas of the operators, and three kinds of compositional inequalities with the best possible constant factors are considered. The theory of double Hilbert-type inequalities and operators are almost built. The lemmas and theorems provide an extensive account of these kinds of inequalities and operators.
Author | : Bicheng Yang |
Publisher | : Bentham Science Publishers |
Total Pages | : 161 |
Release | : 2011 |
Genre | : Mathematics |
ISBN | : 1608052427 |
Discrete Hilbert-type inequalities including Hilbert's inequality are important in mathematical analysis and its applications. In 1998, the author presented an extension of Hilbert's integral inequality with an independent parameter. In 2004, some new extensions of Hilbert's inequality were presented by introducing two pairs of conjugate exponents and additional independent parameters. Since then, a number of new discrete Hilbert-type inequalities have arisen. In this book, the author explains how to use the way of weight coefficients and introduce specific parameters to build new discrete Hil.
Author | : B. Opic |
Publisher | : |
Total Pages | : 351 |
Release | : 1990-01-01 |
Genre | : |
ISBN | : 9780608035987 |
Author | : Alois Kufner |
Publisher | : World Scientific |
Total Pages | : 380 |
Release | : 2003 |
Genre | : Mathematics |
ISBN | : 9789812381958 |
Inequalities play an important role in almost all branches of mathematics as well as in other areas of science and engineering. This book surveys the present state of the theory of weighted integral inequalities of Hardy type, including modifications concerning Hardy-Steklov operators, and some basic results about Hardy type inequalities and their limit (Carleman-Knopp type) inequalities. It also describes some rather new fields such as higher order and fractional order Hardy type inequalities and integral inequalities on the cone of monotone functions together with some applications and open problems. The book can serve as a reference and a source of inspiration for researchers working in these and related areas, but could also be used for advanced graduate courses.