Numerical Simulation of Heat Exchangers

Numerical Simulation of Heat Exchangers
Author: W. J. Minkowycz
Publisher: CRC Press
Total Pages: 230
Release: 2017-04-07
Genre: Science
ISBN: 1482250209

This book deals with certain aspects of material science, particularly with the release of thermal energy associated with bond breaking. It clearly establishes the connection between heat transfer rates and product quality. The editors then sharply draw the thermal distinctions between the various categories of welding processes, and demonstrate how these distinctions are translated into simulation model uniqueness. The book discusses the incorporation of radiative heat transfer processes into the simulation model.

Heat Exchangers

Heat Exchangers
Author: S. M. Sohel Murshed
Publisher: BoD – Books on Demand
Total Pages: 274
Release: 2017-04-27
Genre: Technology & Engineering
ISBN: 9535130935

Presenting contributions from renowned experts in the field, this book covers research and development in fundamental areas of heat exchangers, which include: design and theoretical development, experiments, numerical modeling and simulations. This book is intended to be a useful reference source and guide to researchers, postgraduate students, and engineers in the fields of heat exchangers, cooling, and thermal management.

Heat Transfer and Fluid Flow in Minichannels and Microchannels

Heat Transfer and Fluid Flow in Minichannels and Microchannels
Author: Satish Kandlikar
Publisher: Elsevier
Total Pages: 492
Release: 2006
Genre: Science
ISBN: 9780080445274

&Quot;This book explores flow through passages with hydraulic diameters from about 1 [mu]m to 3 mm, covering the range of minichannels and microchannels. Design equations along with solved examples and practice problems are also included to serve the needs of practicing engineers and students in a graduate course."--BOOK JACKET.

Proceedings of China SAE Congress 2018: Selected Papers

Proceedings of China SAE Congress 2018: Selected Papers
Author: China Society of Automotive Engineers (China SAE)
Publisher: Springer Nature
Total Pages: 975
Release: 2019-10-25
Genre: Technology & Engineering
ISBN: 981139718X

This Proceedings volume gathers outstanding papers submitted to Proceedings of China SAE Congress 2018: Selected Papers, the majority of which are from China – the largest car-maker as well as most dynamic car market in the world. The book covers a wide range of automotive topics, presenting the latest technical advances and approaches to help technicians solve the practical problems that most affect their daily work. It is intended for researchers, engineers and postgraduate students in the fields of automotive engineering and related areas.

Heat Transfer Modeling

Heat Transfer Modeling
Author: George Sidebotham
Publisher: Springer
Total Pages: 524
Release: 2015-02-13
Genre: Science
ISBN: 3319145142

This innovative text emphasizes a "less-is-more" approach to modeling complicated systems such as heat transfer by treating them first as "1-node lumped models" that yield simple closed-form solutions. The author develops numerical techniques for students to obtain more detail, but also trains them to use the techniques only when simpler approaches fail. Covering all essential methods offered in traditional texts, but with a different order, Professor Sidebotham stresses inductive thinking and problem solving as well as a constructive understanding of modern, computer-based practice. Readers learn to develop their own code in the context of the material, rather than just how to use packaged software, offering a deeper, intrinsic grasp behind models of heat transfer. Developed from over twenty-five years of lecture notes to teach students of mechanical and chemical engineering at The Cooper Union for the Advancement of Science and Art, the book is ideal for students and practitioners across engineering disciplines seeking a solid understanding of heat transfer. This book also: · Adopts a novel inductive pedagogy where commonly understood examples are introduced early and theory is developed to explain and predict readily recognized phenomena · Introduces new techniques as needed to address specific problems, in contrast to traditional texts’ use of a deductive approach, where abstract general principles lead to specific examples · Elucidates readers’ understanding of the "heat transfer takes time" idea—transient analysis applications are introduced first and steady-state methods are shown to be a limiting case of those applications · Focuses on basic numerical methods rather than analytical methods of solving partial differential equations, largely obsolete in light of modern computer power · Maximizes readers’ insights to heat transfer modeling by framing theory as an engineering design tool, not as a pure science, as has been done in traditional textbooks · Integrates practical use of spreadsheets for calculations and provides many tips for their use throughout the text examples

Fundamentals of Heat Exchanger Design

Fundamentals of Heat Exchanger Design
Author: Ramesh K. Shah
Publisher: John Wiley & Sons
Total Pages: 978
Release: 2003-08-11
Genre: Technology & Engineering
ISBN: 9780471321712

Comprehensive and unique source integrates the material usually distributed among a half a dozen sources. * Presents a unified approach to modeling of new designs and develops the skills for complex engineering analysis. * Provides industrial insight to the applications of the basic theory developed.

Laminar Flow Forced Convection in Ducts

Laminar Flow Forced Convection in Ducts
Author: R. K. Shah
Publisher: Academic Press
Total Pages: 492
Release: 2014-06-28
Genre: Technology & Engineering
ISBN: 1483191303

Laminar Flow Forced Convection in Ducts is a sourcebook for compact heat exchanger analytical data. This book describes the analytical solutions for laminar fluid flow and forced convection heat transfer in circular and noncircular pipes, including applicable differential equations and boundary conditions involving velocity and temperature problems of fluid flow. The book also discusses fluid flow—how much power is required to pump fluids through the heat exchanger, as well as the heat transfer—the determination of q" distribution, and the temperature of fluid and walls. The text also analyzes the coolant or heat transfer fluid flows in a nuclear power reactor composed of a bundle of circular section fuel rods located inside a round tube. R.A. Axford addresses fluid flow and heat transfers results for the rod bundle geometry in "Heat Transfer in Rod Bundles." The book also provides an overview and guidelines that can be used for the designer and the applied mathematician. This book is suitable for engineers working in electronics, aerospace, instrumentation, and biomechanics that use cooling or heating exchanges or solar collection systems.

Compact Heat Exchangers

Compact Heat Exchangers
Author: J.E. Hesselgreaves
Publisher: Elsevier
Total Pages: 417
Release: 2001-05-08
Genre: Technology & Engineering
ISBN: 0080529542

This book presents the ideas and industrial concepts in compact heat exchanger technology that have been developed in the last 10 years or so. Historically, the development and application of compact heat exchangers and their surfaces has taken place in a piecemeal fashion in a number of rather unrelated areas, principally those of the automotive and prime mover, aerospace, cryogenic and refrigeration sectors. Much detailed technology, familiar in one sector, progressed only slowly over the boundary into another sector. This compartmentalisation was a feature both of the user industries themselves, and also of the supplier, or manufacturing industries. These barriers are now breaking down, with valuable cross-fertilisation taking place. One of the industrial sectors that is waking up to the challenges of compact heat exchangers is that broadly defined as the process sector. If there is a bias in the book, it is towards this sector. Here, in many cases, the technical challenges are severe, since high pressures and temperatures are often involved, and working fluids can be corrosive, reactive or toxic. The opportunities, however, are correspondingly high, since compacts can offer a combination of lower capital or installed cost, lower temperature differences (and hence running costs), and lower inventory. In some cases they give the opportunity for a radical re-think of the process design, by the introduction of process intensification (PI) concepts such as combining process elements in one unit. An example of this is reaction and heat exchange, which offers, among other advantages, significantly lower by-product production.To stimulate future research, the author includes coverage of hitherto neglected approaches, such as that of the Second Law (of Thermodynamics), pioneered by Bejan and co- workers. The justification for this is that there is increasing interest in life-cycle and sustainable approaches to industrial activity as a whole, often involving exergy (Second Law) analysis. Heat exchangers, being fundamental components of energy and process systems, are both savers and spenders of exergy, according to interpretation.

Computer Simulations in Compact Heat Exchangers

Computer Simulations in Compact Heat Exchangers
Author: Bengt Sundén
Publisher: Witpress
Total Pages: 280
Release: 1998
Genre: Science
ISBN:

During recent years, numerical methods for solving flow and heat transfer problems have been developed to such an extent that reliable predictions of the velocity and temperature fields, associated pressure drops and heat fluxes relevant to compact heat exchangers are possible in many cases. This book shows recent advances in computer simulations in compact heat exchangers as well as describing limitations and areas where further research and development are needed.

Heat Transfer Enhancement with Nanofluids

Heat Transfer Enhancement with Nanofluids
Author: Vincenzo Bianco
Publisher: CRC Press
Total Pages: 473
Release: 2015-04-01
Genre: Science
ISBN: 1482254026

Nanofluids are gaining the attention of scientists and researchers around the world. This new category of heat transfer medium improves the thermal conductivity of fluid by suspending small solid particles within it and offers the possibility of increased heat transfer in a variety of applications. Bringing together expert contributions from