Numerical Modelling Of Failure In Advanced Composite Materials
Download Numerical Modelling Of Failure In Advanced Composite Materials full books in PDF, epub, and Kindle. Read online free Numerical Modelling Of Failure In Advanced Composite Materials ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Pedro P. Camanho |
Publisher | : Woodhead Publishing |
Total Pages | : 562 |
Release | : 2015-08-07 |
Genre | : Technology & Engineering |
ISBN | : 0081003420 |
Numerical Modelling of Failure in Advanced Composite Materials comprehensively examines the most recent analysis techniques for advanced composite materials. Advanced composite materials are becoming increasingly important for lightweight design in aerospace, wind energy, and mechanical and civil engineering. Essential for exploiting their potential is the ability to reliably predict their mechanical behaviour, particularly the onset and propagation of failure. Part One investigates numerical modeling approaches to interlaminar failure in advanced composite materials. Part Two considers numerical modelling approaches to intralaminar failure. Part Three presents new and emerging advanced numerical algorithms for modeling and simulation of failure. Part Four closes by examining the various engineering and scientific applications of numerical modeling for analysis of failure in advanced composite materials, such as prediction of impact damage, failure in textile composites, and fracture behavior in through-thickness reinforced laminates. - Examines the most recent analysis models for advanced composite materials in a coherent and comprehensive manner - Investigates numerical modelling approaches to interlaminar failure and intralaminar failure in advanced composite materials - Reviews advanced numerical algorithms for modeling and simulation of failure - Examines various engineering and scientific applications of numerical modelling for analysis of failure in advanced composite materials
Author | : Sohel Rana |
Publisher | : Woodhead Publishing |
Total Pages | : 498 |
Release | : 2016-04-26 |
Genre | : Technology & Engineering |
ISBN | : 0081000545 |
Advanced Composite Materials for Aerospace Engineering: Processing, Properties and Applications predominately focuses on the use of advanced composite materials in aerospace engineering. It discusses both the basic and advanced requirements of these materials for various applications in the aerospace sector, and includes discussions on all the main types of commercial composites that are reviewed and compared to those of metals. Various aspects, including the type of fibre, matrix, structure, properties, modeling, and testing are considered, as well as mechanical and structural behavior, along with recent developments. There are several new types of composite materials that have huge potential for various applications in the aerospace sector, including nanocomposites, multiscale and auxetic composites, and self-sensing and self-healing composites, each of which is discussed in detail. The book's main strength is its coverage of all aspects of the topics, including materials, design, processing, properties, modeling and applications for both existing commercial composites and those currently under research or development. Valuable case studies provide relevant examples of various product designs to enhance learning. - Contains contributions from leading experts in the field - Provides a comprehensive resource on the use of advanced composite materials in the aerospace industry - Discusses both existing commercial composite materials and those currently under research or development
Author | : Wim Van Paepegem |
Publisher | : Woodhead Publishing |
Total Pages | : 766 |
Release | : 2020-11-25 |
Genre | : Technology & Engineering |
ISBN | : 0128189851 |
Multi-scale modelling of composites is a very relevant topic in composites science. This is illustrated by the numerous sessions in the recent European and International Conferences on Composite Materials, but also by the fast developments in multi-scale modelling software tools, developed by large industrial players such as Siemens (Virtual Material Characterization toolkit and MultiMechanics virtual testing software), MSC/e-Xstream (Digimat software), Simulia (micromechanics plug-in in Abaqus), HyperSizer (Multi-scale design of composites), Altair (Altair Multiscale Designer) This book is intended to be an ideal reference on the latest advances in multi-scale modelling of fibre-reinforced polymer composites, that is accessible for both (young) researchers and end users of modelling software. We target three main groups: This book aims at a complete introduction and overview of the state-of-the-art in multi-scale modelling of composites in three axes: • ranging from prediction of homogenized elastic properties to nonlinear material behaviour • ranging from geometrical models for random packing of unidirectional fibres over meso-scale geometries for textile composites to orientation tensors for short fibre composites • ranging from damage modelling of unidirectionally reinforced composites over textile composites to short fibre-reinforced composites The book covers the three most important scales in multi-scale modelling of composites: (i) micro-scale, (ii) meso-scale and (iii) macro-scale. The nano-scale and related atomistic and molecular modelling approaches are deliberately excluded, since the book wants to focus on continuum mechanics and there are already a lot of dedicated books about polymer nanocomposites. A strong focus is put on physics-based damage modelling, in the sense that the chapters devote attention to modelling the different damage mechanisms (matrix cracking, fibre/matrix debonding, delamination, fibre fracture,...) in such a way that the underlying physics of the initiation and growth of these damage modes is respected. The book also gives room to not only discuss the finite element based approaches for multi-scale modelling, but also much faster methods that are popular in industrial software, such as Mean Field Homogenization methods (based on Mori-Tanaka and Eshelby solutions) and variational methods (shear lag theory and more advanced theories). Since the book targets a wide audience, the focus is put on the most common numerical approaches that are used in multi-scale modelling. Very specialized numerical methods like peridynamics modelling, Material Point Method, eXtended Finite Element Method (XFEM), isogeometric analysis, SPH (Smoothed Particle Hydrodynamics),... are excluded. Outline of the book The book is divided in three large parts, well balanced with each a similar number of chapters:
Author | : Mohamed Thariq Hameed Sultan |
Publisher | : CRC Press |
Total Pages | : 183 |
Release | : 2022-03-22 |
Genre | : Technology & Engineering |
ISBN | : 100055001X |
This book focuses on the repair of polymer composites for critical components in aerospace industries. It also covers the complexities of failure and repair of composites, types of fiber reinforcement and bonding. It includes special topics on damage assessment using on-site inspection (NDT and THz techniques) and automated repair processes for reliability and repeatability. Repair of Advanced Composites for Aerospace Applications also describes the characterization, modelling and simulation of the composites' damage mechanisms with respect to specific environments and applications. Failures associated with various composite repairing techniques for aerospace applications are also covered. Key Features: • Addresses the composites development process including damage detection and repair for aerospace applications. • Covers research on the multi-scale process modelling, material modelling, self-healing, repairing and their analyses. • Concentrates on the repair of composites for weight-sensitive applications in automobiles and aerospace. • Analyses perspectives on materials processing and material design. • Details composite joints, their failure, and operations of aircraft component in various environments. This book is aimed at researchers, professionals and graduate students in composite materials, manufacturing, aerospace engineering, advanced materials design and manufacturing, composite materials repair, and hybrid materials repair.
Author | : Vadim Silberschmidt |
Publisher | : Woodhead Publishing |
Total Pages | : 618 |
Release | : 2016-01-23 |
Genre | : Technology & Engineering |
ISBN | : 0081000839 |
Composite materials, with their higher exposure to dynamic loads, have increasingly been used in aerospace, naval, automotive, sports and other sectors over the last few decades. Dynamic Deformation, Damage and Fracture in Composite Materials and Structures reviews various aspects of dynamic deformation, damage and fracture, mostly in composite laminates and sandwich structures, in a broad range of application fields including aerospace, automotive, defense and sports engineering. As the mechanical behavior and performance of composites varies under different dynamic loading regimes and velocities, the book is divided into sections that examine the different loading regimes and velocities. Part one examine low-velocity loading and part two looks at high-velocity loading. Part three then assesses shock and blast (i.e. contactless) events and the final part focuses on impact (contact) events. As sports applications of composites are linked to a specific subset of dynamic loading regimes, these applications are reviewed in the final part. - Examines dynamic deformation and fracture of composite materials - Covers experimental, analytical and numerical aspects - Addresses important application areas such as aerospace, automotive, wind energy and defence, with a special section on sport applications
Author | : Jason P. Carey |
Publisher | : Woodhead Publishing |
Total Pages | : 498 |
Release | : 2016-08-24 |
Genre | : Technology & Engineering |
ISBN | : 0081003773 |
Handbook of Advances in Braided Composite Materials: Theory, Production, Testing and Applications focuses on the fundamentals of these materials and their associated technology. It provides a one-stop resource that outlines all the significant issues about structural braiding, providing readers with the means by which to produce, test, and design braided composite material structures. It documents the latest research findings into these advanced materials and provides new ideas to encourage greater use of the technology. - Introduces new modeling and testing procedures - Presents up-to-date technology developments and recent research findings - Provides both an Android and IPhone App to support design criteria
Author | : Peter W. R Beaumont |
Publisher | : Springer |
Total Pages | : 954 |
Release | : 2016-11-26 |
Genre | : Technology & Engineering |
ISBN | : 3319461206 |
This book brings together a diverse compilation of inter-disciplinary chapters on fundamental aspects of carbon fiber composite materials and multi-functional composite structures: including synthesis, characterization, and evaluation from the nano-structure to structure meters in length. The content and focus of contributions under the umbrella of structural integrity of composite materials embraces topics at the forefront of composite materials science and technology, the disciplines of mechanics, and development of a new predictive design methodology of the safe operation of engineering structures from cradle to grave. Multi-authored papers on multi-scale modelling of problems in material design and predicting the safe performance of engineering structure illustrate the inter-disciplinary nature of the subject. The book examines topics such as Stochastic micro-mechanics theory and application for advanced composite systems Construction of the evaluation process for structural integrity of material and structure Nano- and meso-mechanics modelling of structure evolution during the accumulation of damage Statistical meso-mechanics of composite materials Hierarchical analysis including "age-aware," high-fidelity simulation and virtual mechanical testing of composite structures right up to the point of failure. The volume is ideal for scientists, engineers, and students interested in carbon fiber composite materials, and other composite material systems.
Author | : Kenneth Reifsnider |
Publisher | : Woodhead Publishing |
Total Pages | : 466 |
Release | : 2020-08-02 |
Genre | : Technology & Engineering |
ISBN | : 012818261X |
Durability of Composite Systems meets the challenge of defining these precepts and requirements, from first principles, to applications in a diverse selection of technical fields selected to form a corpus of concepts and methodologies that define the field of durability in composite material systems as a modern discipline. That discipline includes not only the classical rigor of mechanics, physics and chemistry, but also the critical elements of thermodynamics, data analytics, and statistical uncertainty quantification as well as other requirements of the modern subject. This book provides a comprehensive summary of the field, suited to both reference and instructional use. It will be essential reading for academic and industrial researchers, materials scientists and engineers and all those working in the design, analysis and manufacture of composite material systems. - Makes essential direct and detailed connections to modern concepts and methodologies, such as machine learning, systems controls, sustainable and resilient systems, and additive manufacturing - Provides a careful balance between theory and practice so that presentations of details of methodology and philosophy are always driven by a context of applications and examples - Condenses selected information regarding the durability of composite materials in a wide spectrum of applications in the automotive, wind energy, civil engineering, medical devices, electrical systems, aerospace and nuclear fields
Author | : Fabienne Touchard |
Publisher | : Elsevier |
Total Pages | : 366 |
Release | : 2024-06-15 |
Genre | : Technology & Engineering |
ISBN | : 0443159181 |
Additive Manufacturing of Polymer Composites: Materials, Processes, and Properties presents the latest developments in AM of polymer matrix composites and illustrates the large range of composite materials that can be obtained. Different technologies with their own specificities such as: fused filament fabrication, selective laser sintering, stereolithography, and direct-ink-writing. Composites with chopped or continuous reinforcement, with synthetic or natural fibers, with thermoplastic or thermoset resin are compared and described in detail. Their thermal, physical, electrical, and mechanical properties are discussed. The book is dedicated to professionals involved in engineering design and production, as well as industrial communities who want to gain in-depth knowledge in the field of 3D printed composites. - Provides an overview of different methods for additive manufacturing of polymer-based matrix composites - Covers long and short fiber-based composites and corresponding application examples - Addresses the development and properties of a wide range of matrices (thermoplastics, thermosets), and fibers (natural and synthetic) in a user-specified orientation, continuous or random organization and hierarchical structures - Presents sustainability and structural reliability of composite structures - Displays a careful balance between materials science and technology, providing a detailed understanding of how composites' properties, processing, performance, and structure are interrelated
Author | : James Njuguna |
Publisher | : Woodhead Publishing |
Total Pages | : 476 |
Release | : 2016-01-22 |
Genre | : Technology & Engineering |
ISBN | : 1782423435 |
Lightweight Composite Structures in Transport: Design, Manufacturing, Analysis and Performance provides a detailed review of lightweight composite materials and structures and discusses their use in the transport industry, specifically surface and air transport. The book covers materials selection, the properties and performance of materials, and structures, design solutions, and manufacturing techniques. A broad range of different material classes is reviewed with emphasis on advanced materials. Chapters in the first two parts of the book consider the lightweight philosophy and current developments in manufacturing techniques for lightweight composite structures in the transport industry, with subsequent chapters in parts three to five discussing structural optimization and analysis, properties, and performance of lightweight composite structures, durability, damage tolerance and structural integrity. Final chapters present case studies on lightweight composite design for transport structures. - Comprehensively covers materials selection, design solutions, manufacturing techniques, structural analysis, and performance of lightweight composite structures in the transport industry - Includes commentary from leading industrial and academic experts in the field who present cutting-edge research on advanced lightweight materials for the transport industry - Includes case studies on lightweight composite design for transport structures