Riemann Solvers and Numerical Methods for Fluid Dynamics

Riemann Solvers and Numerical Methods for Fluid Dynamics
Author: Eleuterio F. Toro
Publisher: Springer Science & Business Media
Total Pages: 635
Release: 2013-04-17
Genre: Technology & Engineering
ISBN: 366203915X

High resolution upwind and centered methods are today a mature generation of computational techniques applicable to a wide range of engineering and scientific disciplines, Computational Fluid Dynamics (CFD) being the most prominent up to now. This textbook gives a comprehensive, coherent and practical presentation of this class of techniques. The book is designed to provide readers with an understanding of the basic concepts, some of the underlying theory, the ability to critically use the current research papers on the subject, and, above all, with the required information for the practical implementation of the methods. Applications include: compressible, steady, unsteady, reactive, viscous, non-viscous and free surface flows.

Numerical Methods for Non-Newtonian Fluids

Numerical Methods for Non-Newtonian Fluids
Author:
Publisher: Elsevier
Total Pages: 826
Release: 2010-12-20
Genre: Mathematics
ISBN: 0080932029

Non-Newtonian flows and their numerical simulations have generated an abundant literature, as well as many publications and references to which can be found in this volume's articles. This abundance of publications can be explained by the fact that non-Newtonian fluids occur in many real life situations: the food industry, oil & gas industry, chemical, civil and mechanical engineering, the bio-Sciences, to name just a few. Mathematical and numerical analysis of non-Newtonian fluid flow models provide challenging problems to partial differential equations specialists and applied computational mathematicians alike. This volume offers investigations. Results and conclusions that will no doubt be useful to engineers and computational and applied mathematicians who are focused on various aspects of non-Newtonian Fluid Mechanics. - New review of well-known computational methods for the simulation viscoelastic and viscoplastic types - Discusses new numerical methods that have proven to be more efficient and more accurate than traditional methods - Articles that discuss the numerical simulation of particulate flow for viscoelastic fluids

Numerical Methods for Non-Newtonian Fluids

Numerical Methods for Non-Newtonian Fluids
Author: Philippe G. Ciarlet
Publisher: Elsevier
Total Pages: 827
Release: 1990
Genre: Mathematics
ISBN: 0444530479

Handbook of Numerical Methods for Hyperbolic Problems explores the changes that have taken place in the past few decades regarding literature in the design, analysis and application of various numerical algorithms for solving hyperbolic equations. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and readily understand their relative advantages and limitations.

Numerical Methods for Fluid Dynamics

Numerical Methods for Fluid Dynamics
Author: Dale R. Durran
Publisher: Springer Science & Business Media
Total Pages: 527
Release: 2010-09-14
Genre: Mathematics
ISBN: 1441964126

This scholarly text provides an introduction to the numerical methods used to model partial differential equations, with focus on atmospheric and oceanic flows. The book covers both the essentials of building a numerical model and the more sophisticated techniques that are now available. Finite difference methods, spectral methods, finite element method, flux-corrected methods and TVC schemes are all discussed. Throughout, the author keeps to a middle ground between the theorem-proof formalism of a mathematical text and the highly empirical approach found in some engineering publications. The book establishes a concrete link between theory and practice using an extensive range of test problems to illustrate the theoretically derived properties of various methods. From the reviews: "...the books unquestionable advantage is the clarity and simplicity in presenting virtually all basic ideas and methods of numerical analysis currently actively used in geophysical fluid dynamics." Physics of Atmosphere and Ocean

Introduction to the Numerical Analysis of Incompressible Viscous Flows

Introduction to the Numerical Analysis of Incompressible Viscous Flows
Author: William Layton
Publisher: SIAM
Total Pages: 220
Release: 2008-01-01
Genre: Mathematics
ISBN: 0898718902

Introduction to the Numerical Analysis of Incompressible Viscous Flows treats the numerical analysis of finite element computational fluid dynamics. Assuming minimal background, the text covers finite element methods; the derivation, behavior, analysis, and numerical analysis of Navier-Stokes equations; and turbulence and turbulence models used in simulations. Each chapter on theory is followed by a numerical analysis chapter that expands on the theory. This book provides the foundation for understanding the interconnection of the physics, mathematics, and numerics of the incompressible case, which is essential for progressing to the more complex flows not addressed in this book (e.g., viscoelasticity, plasmas, compressible flows, coating flows, flows of mixtures of fluids, and bubbly flows). With mathematical rigor and physical clarity, the book progresses from the mathematical preliminaries of energy and stress to finite element computational fluid dynamics in a format manageable in one semester. Audience: this unified treatment of fluid mechanics, analysis, and numerical analysis is intended for graduate students in mathematics, engineering, physics, and the sciences who are interested in understanding the foundations of methods commonly used for flow simulations.

Numerical Methods in Electromagnetics

Numerical Methods in Electromagnetics
Author: W.H.A. SCHILDERS
Publisher: Elsevier
Total Pages: 930
Release: 2005-04-04
Genre: Mathematics
ISBN: 0080459153

This special volume provides a broad overview and insight in the way numerical methods are being used to solve the wide variety of problems in the electronics industry. Furthermore its aim is to give researchers from other fields of application the opportunity to benefit from the results wich have been obtained in the electronics industry.* Complete survey of numerical methods used in the electronic industry* Each chapter is selfcontained* Presents state-of-the-art applications and methods* Internationally recognised authors

Mathematical Modelling and Numerical Methods in Finance

Mathematical Modelling and Numerical Methods in Finance
Author: Alain Bensoussan
Publisher: Elsevier
Total Pages: 743
Release: 2009-06-16
Genre: Mathematics
ISBN: 0080931006

Mathematical finance is a prolific scientific domain in which there exists a particular characteristic of developing both advanced theories and practical techniques simultaneously. Mathematical Modelling and Numerical Methods in Finance addresses the three most important aspects in the field: mathematical models, computational methods, and applications, and provides a solid overview of major new ideas and results in the three domains. - Coverage of all aspects of quantitative finance including models, computational methods and applications - Provides an overview of new ideas and results - Contributors are leaders of the field

Guide to Information Sources in Mathematics and Statistics

Guide to Information Sources in Mathematics and Statistics
Author: Martha A. Tucker
Publisher: Bloomsbury Publishing USA
Total Pages: 362
Release: 2004-09-30
Genre: Language Arts & Disciplines
ISBN: 0313053375

This book is a reference for librarians, mathematicians, and statisticians involved in college and research level mathematics and statistics in the 21st century. We are in a time of transition in scholarly communications in mathematics, practices which have changed little for a hundred years are giving way to new modes of accessing information. Where journals, books, indexes and catalogs were once the physical representation of a good mathematics library, shelves have given way to computers, and users are often accessing information from remote places. Part I is a historical survey of the past 15 years tracking this huge transition in scholarly communications in mathematics. Part II of the book is the bibliography of resources recommended to support the disciplines of mathematics and statistics. These are grouped by type of material. Publication dates range from the 1800's onwards. Hundreds of electronic resources-some online, both dynamic and static, some in fixed media, are listed among the paper resources. Amazingly a majority of listed electronic resources are free.