Numerical Issues In Statistical Computing For The Social Scientist
Download Numerical Issues In Statistical Computing For The Social Scientist full books in PDF, epub, and Kindle. Read online free Numerical Issues In Statistical Computing For The Social Scientist ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Micah Altman |
Publisher | : John Wiley & Sons |
Total Pages | : 349 |
Release | : 2004-02-15 |
Genre | : Mathematics |
ISBN | : 0471475742 |
At last—a social scientist's guide through the pitfalls of modern statistical computing Addressing the current deficiency in the literature on statistical methods as they apply to the social and behavioral sciences, Numerical Issues in Statistical Computing for the Social Scientist seeks to provide readers with a unique practical guidebook to the numerical methods underlying computerized statistical calculations specific to these fields. The authors demonstrate that knowledge of these numerical methods and how they are used in statistical packages is essential for making accurate inferences. With the aid of key contributors from both the social and behavioral sciences, the authors have assembled a rich set of interrelated chapters designed to guide empirical social scientists through the potential minefield of modern statistical computing. Uniquely accessible and abounding in modern-day tools, tricks, and advice, the text successfully bridges the gap between the current level of social science methodology and the more sophisticated technical coverage usually associated with the statistical field. Highlights include: A focus on problems occurring in maximum likelihood estimation Integrated examples of statistical computing (using software packages such as the SAS, Gauss, Splus, R, Stata, LIMDEP, SPSS, WinBUGS, and MATLAB®) A guide to choosing accurate statistical packages Discussions of a multitude of computationally intensive statistical approaches such as ecological inference, Markov chain Monte Carlo, and spatial regression analysis Emphasis on specific numerical problems, statistical procedures, and their applications in the field Replications and re-analysis of published social science research, using innovative numerical methods Key numerical estimation issues along with the means of avoiding common pitfalls A related Web site includes test data for use in demonstrating numerical problems, code for applying the original methods described in the book, and an online bibliography of Web resources for the statistical computation Designed as an independent research tool, a professional reference, or a classroom supplement, the book presents a well-thought-out treatment of a complex and multifaceted field.
Author | : Simon Jackman |
Publisher | : John Wiley & Sons |
Total Pages | : 598 |
Release | : 2009-10-27 |
Genre | : Mathematics |
ISBN | : 9780470686638 |
Bayesian methods are increasingly being used in the social sciences, as the problems encountered lend themselves so naturally to the subjective qualities of Bayesian methodology. This book provides an accessible introduction to Bayesian methods, tailored specifically for social science students. It contains lots of real examples from political science, psychology, sociology, and economics, exercises in all chapters, and detailed descriptions of all the key concepts, without assuming any background in statistics beyond a first course. It features examples of how to implement the methods using WinBUGS – the most-widely used Bayesian analysis software in the world – and R – an open-source statistical software. The book is supported by a Website featuring WinBUGS and R code, and data sets.
Author | : Tarek Sobh |
Publisher | : Springer Science & Business Media |
Total Pages | : 602 |
Release | : 2008-08-15 |
Genre | : Computers |
ISBN | : 1402087411 |
Advances in Computer and Information Sciences and Engineering includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Computer Science, Software Engineering, Computer Engineering, and Systems Engineering and Sciences. Advances in Computer and Information Sciences and Engineering includes selected papers from the conference proceedings of the International Conference on Systems, Computing Sciences and Software Engineering (SCSS 2007) which was part of the International Joint Conferences on Computer, Information and Systems Sciences and Engineering (CISSE 2007).
Author | : Sruthi. S |
Publisher | : RED'SHINE Publication. Pvt. Ltd |
Total Pages | : 313 |
Release | : |
Genre | : Antiques & Collectibles |
ISBN | : 9393239592 |
Author | : Gary King |
Publisher | : Cambridge University Press |
Total Pages | : 436 |
Release | : 2004-09-13 |
Genre | : Nature |
ISBN | : 9780521542807 |
Drawing upon the recent explosion of research in the field, a diverse group of scholars surveys the latest strategies for solving ecological inference problems, the process of trying to infer individual behavior from aggregate data. The uncertainties and information lost in aggregation make ecological inference one of the most difficult areas of statistical inference, but these inferences are required in many academic fields, as well as by legislatures and the Courts in redistricting, marketing research by business, and policy analysis by governments. This wide-ranging collection of essays offers many fresh and important contributions to the study of ecological inference.
Author | : National Research Council |
Publisher | : National Academies Press |
Total Pages | : 239 |
Release | : 2012-12-19 |
Genre | : Computers |
ISBN | : 0309267285 |
The growth of electronic publishing of literature has created new challenges, such as the need for mechanisms for citing online references in ways that can assure discoverability and retrieval for many years into the future. The growth in online datasets presents related, yet more complex challenges. It depends upon the ability to reliably identify, locate, access, interpret, and verify the version, integrity, and provenance of digital datasets. Data citation standards and good practices can form the basis for increased incentives, recognition, and rewards for scientific data activities that in many cases are currently lacking in many fields of research. The rapidly-expanding universe of online digital data holds the promise of allowing peer-examination and review of conclusions or analysis based on experimental or observational data, the integration of data into new forms of scholarly publishing, and the ability for subsequent users to make new and unforeseen uses and analyses of the same data-either in isolation, or in combination with, other datasets. The problem of citing online data is complicated by the lack of established practices for referring to portions or subsets of data. There are a number of initiatives in different organizations, countries, and disciplines already underway. An important set of technical and policy approaches have already been launched by the U.S. National Information Standards Organization (NISO) and other standards bodies regarding persistent identifiers and online linking. The workshop summarized in For Attribution-Developing Data Attribution and Citation Practices and Standards: Summary of an International Workshop was organized by a steering committee under the National Research Council's (NRC's) Board on Research Data and Information, in collaboration with an international CODATA-ICSTI Task Group on Data Citation Standards and Practices. The purpose of the symposium was to examine a number of key issues related to data identification, attribution, citation, and linking to help coordinate activities in this area internationally, and to promote common practices and standards in the scientific community.
Author | : Shelemyahu Zacks |
Publisher | : John Wiley & Sons |
Total Pages | : 499 |
Release | : 2013-12-17 |
Genre | : Mathematics |
ISBN | : 1118605837 |
Provides the necessary skills to solve problems in mathematical statistics through theory, concrete examples, and exercises With a clear and detailed approach to the fundamentals of statistical theory, Examples and Problems in Mathematical Statistics uniquely bridges the gap between theory andapplication and presents numerous problem-solving examples that illustrate the relatednotations and proven results. Written by an established authority in probability and mathematical statistics, each chapter begins with a theoretical presentation to introduce both the topic and the important results in an effort to aid in overall comprehension. Examples are then provided, followed by problems, and finally, solutions to some of the earlier problems. In addition, Examples and Problems in Mathematical Statistics features: Over 160 practical and interesting real-world examples from a variety of fields including engineering, mathematics, and statistics to help readers become proficient in theoretical problem solving More than 430 unique exercises with select solutions Key statistical inference topics, such as probability theory, statistical distributions, sufficient statistics, information in samples, testing statistical hypotheses, statistical estimation, confidence and tolerance intervals, large sample theory, and Bayesian analysis Recommended for graduate-level courses in probability and statistical inference, Examples and Problems in Mathematical Statistics is also an ideal reference for applied statisticians and researchers.
Author | : Garson, G. David |
Publisher | : IGI Global |
Total Pages | : 1066 |
Release | : 2008-01-31 |
Genre | : Computers |
ISBN | : 1599048582 |
"This book compiles estimable research on the global trend toward the rapidly increasing use of information technology in the public sector, discussing such issues as e-government and e-commerce; project management and information technology evaluation; system design and data processing; security and protection; and privacy, access, and ethics of public information technology"--Provided by publisher.
Author | : Paul H. Kvam |
Publisher | : John Wiley & Sons |
Total Pages | : 448 |
Release | : 2007-08-24 |
Genre | : Mathematics |
ISBN | : 9780470168691 |
A thorough and definitive book that fully addresses traditional and modern-day topics of nonparametric statistics This book presents a practical approach to nonparametric statistical analysis and provides comprehensive coverage of both established and newly developed methods. With the use of MATLAB, the authors present information on theorems and rank tests in an applied fashion, with an emphasis on modern methods in regression and curve fitting, bootstrap confidence intervals, splines, wavelets, empirical likelihood, and goodness-of-fit testing. Nonparametric Statistics with Applications to Science and Engineering begins with succinct coverage of basic results for order statistics, methods of categorical data analysis, nonparametric regression, and curve fitting methods. The authors then focus on nonparametric procedures that are becoming more relevant to engineering researchers and practitioners. The important fundamental materials needed to effectively learn and apply the discussed methods are also provided throughout the book. Complete with exercise sets, chapter reviews, and a related Web site that features downloadable MATLAB applications, this book is an essential textbook for graduate courses in engineering and the physical sciences and also serves as a valuable reference for researchers who seek a more comprehensive understanding of modern nonparametric statistical methods.
Author | : Alfred DeMaris |
Publisher | : John Wiley & Sons |
Total Pages | : 560 |
Release | : 2004-11-11 |
Genre | : Mathematics |
ISBN | : 0471677558 |
An accessible introduction to the use of regression analysis in the social sciences Regression with Social Data: Modeling Continuous and Limited Response Variables represents the most complete and fully integrated coverage of regression modeling currently available for graduate-level behavioral science students and practitioners. Covering techniques that span the full spectrum of levels of measurement for both continuous and limited response variables, and using examples taken from such disciplines as sociology, psychology, political science, and public health, the author succeeds in demystifying an academically rigorous subject and making it accessible to a wider audience. Content includes coverage of: Logit, probit, scobit, truncated, and censored regressions Multiple regression with ANOVA and ANCOVA models Binary and multinomial response models Poisson, negative binomial, and other regression models for event-count data Survival analysis using multistate, multiepisode, and interval-censored survival models Concepts are reinforced throughout with numerous chapter problems, exercises, and real data sets. Step-by-step solutions plus an appendix of mathematical tutorials make even complex problems accessible to readers with only moderate math skills. The book’s logical flow, wide applicability, and uniquely comprehensive coverage make it both an ideal text for a variety of graduate course settings and a useful reference for practicing researchers in the field.