Number Theory Algebra Mathematical Analysis And Their Applications
Download Number Theory Algebra Mathematical Analysis And Their Applications full books in PDF, epub, and Kindle. Read online free Number Theory Algebra Mathematical Analysis And Their Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Ivan Matveevič Vinogradov (Mathematiker) |
Publisher | : American Mathematical Soc. |
Total Pages | : 390 |
Release | : 1993 |
Genre | : Mathematics |
ISBN | : 9780821831502 |
This work is dedicated to the 100th anniversary of the birth of I. M. Vinogradov. It contains papers ranging over various areas of mathematics: including number theory; algebra; theory of functions of a real variable and of a complex variable; ordinary differential equations; optimal control; partial differential equations; mathematical physics; mechanics, and probability.
Author | : Jaime Gutierrez |
Publisher | : Springer |
Total Pages | : 222 |
Release | : 2015-01-20 |
Genre | : Computers |
ISBN | : 3319150812 |
Algebra and number theory have always been counted among the most beautiful mathematical areas with deep proofs and elegant results. However, for a long time they were not considered that important in view of the lack of real-life applications. This has dramatically changed: nowadays we find applications of algebra and number theory frequently in our daily life. This book focuses on the theory and algorithms for polynomials over various coefficient domains such as a finite field or ring. The operations on polynomials in the focus are factorization, composition and decomposition, basis computation for modules, etc. Algorithms for such operations on polynomials have always been a central interest in computer algebra, as it combines formal (the variables) and algebraic or numeric (the coefficients) aspects. The papers presented were selected from the Workshop on Computer Algebra and Polynomials, which was held in Linz at the Johann Radon Institute for Computational and Applied Mathematics (RICAM) during November 25-29, 2013, at the occasion of the Special Semester on Applications of Algebra and Number Theory.
Author | : Amir Akbary |
Publisher | : |
Total Pages | : |
Release | : 2018 |
Genre | : MATHEMATICS |
ISBN | : 9783319973807 |
This volume contains proceedings of two conferences held in Toronto (Canada) and Kozhikode (India) in 2016 in honor of the 60th birthday of Professor Kumar Murty. The meetings were focused on several aspects of number theory: The theory of automorphic forms and their associated L-functions Arithmetic geometry, with special emphasis on algebraic cycles, Shimura varieties, and explicit methods in the theory of abelian varieties The emerging applications of number theory in information technology Kumar Murty has been a substantial influence in these topics, and the two conferences were aimed at honoring his many contributions to number theory, arithmetic geometry, and information technology.--
Author | : Tullio Ceccherini-Silberstein |
Publisher | : Cambridge University Press |
Total Pages | : 589 |
Release | : 2018-06-21 |
Genre | : Mathematics |
ISBN | : 1107182336 |
A self-contained introduction to discrete harmonic analysis with an emphasis on the Discrete and Fast Fourier Transforms.
Author | : Masayoshi Hata |
Publisher | : World Scientific Publishing Company |
Total Pages | : 376 |
Release | : 2016-12-12 |
Genre | : Mathematics |
ISBN | : 9813142847 |
This second edition introduces an additional set of new mathematical problems with their detailed solutions in real analysis. It also provides numerous improved solutions to the existing problems from the previous edition, and includes very useful tips and skills for the readers to master successfully. There are three more chapters that expand further on the topics of Bernoulli numbers, differential equations and metric spaces.Each chapter has a summary of basic points, in which some fundamental definitions and results are prepared. This also contains many brief historical comments for some significant mathematical results in real analysis together with many references.Problems and Solutions in Real Analysis can be treated as a collection of advanced exercises by undergraduate students during or after their courses of calculus and linear algebra. It is also instructive for graduate students who are interested in analytic number theory. Readers will also be able to completely grasp a simple and elementary proof of the Prime Number Theorem through several exercises. This volume is also suitable for non-experts who wish to understand mathematical analysis.
Author | : Nikolaĭ Nikolaevich Bogoli︠u︡bov |
Publisher | : American Mathematical Soc. |
Total Pages | : 262 |
Release | : 1984 |
Genre | : Mathematics |
ISBN | : 9780821830772 |
Contains original papers on various branches of mathematics: analytic number theory, algebra, partial differential equations, probability theory, and differential games.
Author | : Ilwoo Cho |
Publisher | : CRC Press |
Total Pages | : 446 |
Release | : 2013-09-11 |
Genre | : Mathematics |
ISBN | : 146659019X |
This book introduces the study of algebra induced by combinatorial objects called directed graphs. These graphs are used as tools in the analysis of graph-theoretic problems and in the characterization and solution of analytic problems. The book presents recent research in operator algebra theory connected with discrete and combinatorial mathematical objects. It also covers tools and methods from a variety of mathematical areas, including algebra, operator theory, and combinatorics, and offers numerous applications of fractal theory, entropy theory, K-theory, and index theory.
Author | : Kenneth R. Davidson |
Publisher | : |
Total Pages | : 652 |
Release | : 2002 |
Genre | : Mathematics |
ISBN | : |
Using a progressive but flexible format, this book contains a series of independent chapters that show how the principles and theory of real analysis can be applied in a variety of settings-in subjects ranging from Fourier series and polynomial approximation to discrete dynamical systems and nonlinear optimization. Users will be prepared for more intensive work in each topic through these applications and their accompanying exercises. Chapter topics under the abstract analysis heading include: the real numbers, series, the topology of R^n, functions, normed vector spaces, differentiation and integration, and limits of functions. Applications cover approximation by polynomials, discrete dynamical systems, differential equations, Fourier series and physics, Fourier series and approximation, wavelets, and convexity and optimization. For math enthusiasts with a prior knowledge of both calculus and linear algebra.
Author | : Wieb Bosma |
Publisher | : Springer Science & Business Media |
Total Pages | : 326 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 9401711089 |
Computers have stretched the limits of what is possible in mathematics. More: they have given rise to new fields of mathematical study; the analysis of new and traditional algorithms, the creation of new paradigms for implementing computational methods, the viewing of old techniques from a concrete algorithmic vantage point, to name but a few. Computational Algebra and Number Theory lies at the lively intersection of computer science and mathematics. It highlights the surprising width and depth of the field through examples drawn from current activity, ranging from category theory, graph theory and combinatorics, to more classical computational areas, such as group theory and number theory. Many of the papers in the book provide a survey of their topic, as well as a description of present research. Throughout the variety of mathematical and computational fields represented, the emphasis is placed on the common principles and the methods employed. Audience: Students, experts, and those performing current research in any of the topics mentioned above.
Author | : William Stein |
Publisher | : Springer Science & Business Media |
Total Pages | : 173 |
Release | : 2008-10-28 |
Genre | : Mathematics |
ISBN | : 0387855254 |
This is a book about prime numbers, congruences, secret messages, and elliptic curves that you can read cover to cover. It grew out of undergr- uate courses that the author taught at Harvard, UC San Diego, and the University of Washington. The systematic study of number theory was initiated around 300B. C. when Euclid proved that there are in?nitely many prime numbers, and also cleverly deduced the fundamental theorem of arithmetic, which asserts that every positive integer factors uniquely as a product of primes. Over a thousand years later (around 972A. D. ) Arab mathematicians formulated the congruent number problem that asks for a way to decide whether or not a given positive integer n is the area of a right triangle, all three of whose sides are rational numbers. Then another thousand years later (in 1976), Di?e and Hellman introduced the ?rst ever public-key cryptosystem, which enabled two people to communicate secretely over a public communications channel with no predetermined secret; this invention and the ones that followed it revolutionized the world of digital communication. In the 1980s and 1990s, elliptic curves revolutionized number theory, providing striking new insights into the congruent number problem, primality testing, publ- key cryptography, attacks on public-key systems, and playing a central role in Andrew Wiles’ resolution of Fermat’s Last Theorem.