Nuclear Magnetic Resonance Nmr In Biochemistry
Download Nuclear Magnetic Resonance Nmr In Biochemistry full books in PDF, epub, and Kindle. Read online free Nuclear Magnetic Resonance Nmr In Biochemistry ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Thomas James |
Publisher | : Academic Press |
Total Pages | : 440 |
Release | : 1975-06-28 |
Genre | : Science |
ISBN | : |
Nuclear Magnetic Resonance in Biochemistry: Principles and Applications focuses on the principles and applications of nuclear magnetic resonance (NMR) in biochemistry. Topics covered include experimental methods in NMR; the mechanisms of NMR relaxation; chemical and paramagnetic shifts; spin-spin splitting; the use of NMR in investigations of biopolymers and biomolecular interactions; and molecular dynamics in biological and biochemical systems. This text is comprised of eight chapters; the first of which gives an overview of NMR spectroscopy and its use in studies of biological systems. The next two chapters discuss the theoretical basis for NMR applications in biochemistry, with emphasis on Bloch equations, quantum mechanics, correlation function and correlation time, double resonance, and chemical exchange. The reader is then introduced to the basis for chemical shifts and spin-spin splitting, along with several examples of the use of these NMR parameters in studies of small molecule interactions and structure. The experimental apparatus and procedures employed in NMR studies, Fourier transform NMR, and NMR spectral parameters of small molecules interacting with macromolecules are also considered. The book highlights the information obtainable from the spectra of biopolymers, and then concludes with a chapter on NMR investigations of the state of motion of lipids in membranes and model membranes; water in macromolecular and cellular systems; and sodium ion in biological tissue. This book is intended primarily for chemists, biochemists, biophysicists, and molecular biologists, as well as graduate students.
Author | : John L. Markley |
Publisher | : Oxford University Press |
Total Pages | : 375 |
Release | : 1997-01-30 |
Genre | : Medical |
ISBN | : 0195094689 |
This book presents a critical assessment of progress on the use of nuclear magnetic resonance spectroscopy to determine the structure of proteins, including brief reviews of the history of the field along with coverage of current clinical and in vivo applications. The book, in honor of Oleg Jardetsky, one of the pioneers of the field, is edited by two of the most highly respected investigators using NMR, and features contributions by most of the leading workers in the field. It will be valued as a landmark publication that presents the state-of-the-art perspectives regarding one of today's most important technologies.
Author | : Atta-ur-Rahman |
Publisher | : Bentham Science Publishers |
Total Pages | : 289 |
Release | : 2016-11-22 |
Genre | : Science |
ISBN | : 168108287X |
Applications of NMR Spectroscopy is a book series devoted to publishing the latest advances in the applications of nuclear magnetic resonance (NMR) spectroscopy in various fields of organic chemistry, biochemistry, health and agriculture. The fifth volume of the series features several reviews focusing on NMR spectroscopic techniques for identifying natural and synthetic compounds (polymer and peptide characterization, GABA in tinnitus affected mice), medical diagnosis and therapy (gliomas) and food analysis. The spectroscopic methods highlighted in this volume include high resolution proton magnetic resonance spectroscopy and solid state NMR.
Author | : Joseph B. Lambert |
Publisher | : John Wiley & Sons |
Total Pages | : 485 |
Release | : 2019-01-04 |
Genre | : Science |
ISBN | : 1119295238 |
Combines clear and concise discussions of key NMR concepts with succinct and illustrative examples Designed to cover a full course in Nuclear Magnetic Resonance (NMR) Spectroscopy, this text offers complete coverage of classic (one-dimensional) NMR as well as up-to-date coverage of two-dimensional NMR and other modern methods. It contains practical advice, theory, illustrated applications, and classroom-tested problems; looks at such important ideas as relaxation, NOEs, phase cycling, and processing parameters; and provides brief, yet fully comprehensible, examples. It also uniquely lists all of the general parameters for many experiments including mixing times, number of scans, relaxation times, and more. Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition begins by introducing readers to NMR spectroscopy - an analytical technique used in modern chemistry, biochemistry, and biology that allows identification and characterization of organic, and some inorganic, compounds. It offers chapters covering: Experimental Methods; The Chemical Shift; The Coupling Constant; Further Topics in One-Dimensional NMR Spectroscopy; Two-Dimensional NMR Spectroscopy; Advanced Experimental Methods; and Structural Elucidation. Features classical analysis of chemical shifts and coupling constants for both protons and other nuclei, as well as modern multi‐pulse and multi-dimensional methods Contains experimental procedures and practical advice relative to the execution of NMR experiments Includes a chapter-long, worked-out problem that illustrates the application of nearly all current methods Offers appendices containing the theoretical basis of NMR, including the most modern approach that uses product operators and coherence-level diagrams By offering a balance between volumes aimed at NMR specialists and the structure-determination-only books that focus on synthetic organic chemists, Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition is an excellent text for students and post-graduate students working in analytical and bio-sciences, as well as scientists who use NMR spectroscopy as a primary tool in their work.
Author | : Harald Günther |
Publisher | : John Wiley & Sons |
Total Pages | : 842 |
Release | : 2013-12-13 |
Genre | : Science |
ISBN | : 3527674772 |
Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful and widely used techniques in chemical research for investigating structures and dynamics of molecules. Advanced methods can even be utilized for structure determinations of biopolymers, for example proteins or nucleic acids. NMR is also used in medicine for magnetic resonance imaging (MRI). The method is based on spectral lines of different atomic nuclei that are excited when a strong magnetic field and a radiofrequency transmitter are applied. The method is very sensitive to the features of molecular structure because also the neighboring atoms influence the signals from individual nuclei and this is important for determining the 3D-structure of molecules. This new edition of the popular classic has a clear style and a highly practical, mostly non-mathematical approach. Many examples are taken from organic and organometallic chemistry, making this book an invaluable guide to undergraduate and graduate students of organic chemistry, biochemistry, spectroscopy or physical chemistry, and to researchers using this well-established and extremely important technique. Problems and solutions are included.
Author | : Jeremy N. S. Evans |
Publisher | : Oxford University Press, USA |
Total Pages | : 444 |
Release | : 1995 |
Genre | : Science |
ISBN | : 9780198547662 |
The technique of nuclear magnetic resonance (NMR) spectroscopy is an important tool in biochemistry and biophysics for the understanding of the structure and ultimately, the function of biomolecules. This textbook explains the salient features of biological NMR spectroscopy to undergraduates and postgraduates taking courses in NMR, biological NMR, physical biochemistry, and biophysics. Unlike other books in the general field of NMR (except the advanced treatises), the approach here is tointroduce and make use of quantum mechanical product operators as well as the classical vector method of explaining the bewildering array of pulse sequences available today. The book covers two- dimensional, three- dimensional, and four- dimensional NMR and their application to protein and DNA structure determination. A unique feature is the coverage of the biological aspects of solid- state NMR spectroscopy. The author provides many selected examples from the research literature, illustratingthe applications of NMR spectroscopy to biological proteins.
Author | : T.I. Atta-Ur-Rahman |
Publisher | : Springer Science & Business Media |
Total Pages | : 366 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 1461248949 |
Nuclear magnetic resonance spectroscopy is presently going through an explosive phase of development. This has been brought about largely on account of the advent of Fourier transform NMR spectrometers linked to powerful microcomputers which have opened up a whole new world for structural chemists and biochemists. This is exemplified by a host of publications, especially on new pulse sequences, which continue to provide new exciting modifications for recording two-dimensional NMR. Moreover, NMR is no longer confined to structural chemists but has moved firmly into the area of medicine as a powerful nondestructive body scanning technique. With this background, I felt that there was need for a text which would provide a fairly comprehensive account of the important features of 1 H- and 13C-NMR spectroscopy in one book, as well as make available an up-to-date account of recent developments of new pulse sequences, with particular reference to 2D-NMR spectroscopy. Since this book is written for students of chemistry and biochemistry as well as for biology students who have chemistry as a subsidiary, it was decided to avoid a complex mathematical treatment and to present, as far as possible without oversimplification, a qualitative account of 1 H- and 13C-NMR spectroscopy as it is today. I hope that the book satisfactorily meets these objectives.
Author | : Jean-Paul Renaud |
Publisher | : John Wiley & Sons |
Total Pages | : 1437 |
Release | : 2020-01-09 |
Genre | : Medical |
ISBN | : 1118900502 |
With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins
Author | : Raymond A. Dwek |
Publisher | : Oxford University Press, USA |
Total Pages | : 426 |
Release | : 1973 |
Genre | : Language Arts & Disciplines |
ISBN | : |
Author | : J. A. Tossell |
Publisher | : Springer Science & Business Media |
Total Pages | : 586 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 9401116520 |
Modern approaches to the theoretical computation and experimental determination of NMR shielding tensors are described in twenty-nine papers based on lectures presented at the NATO ARW. All of the most popular computational methods are reviewed and recent progress is described in their application to chemical, biochemical, geochemical and materials science problems. Experimental studies on NMR shieldings in gases, liquids and solids are also included, with special emphasis placed upon the relationship between NMR shielding and geometric structure and upon tests of the accuracy of the various computational methods. Qualitative MO schemes and semiempirical approaches are also considered in light of the computational results. This is a valuable book for anyone interested in how the NMR shielding tensor can be used to determine the geometric and electronic structures of molecules and solids. (abstract) Modern methods for computing and measuring nuclear magnetic resonance shielding tensors are described in papers by a great number of leaders in the field. The most popular methods for quantum mechanically calculating NMR shielding tensors are reviewed and many applications of these methods are described to problems in chemistry, biochemistry, geochemistry and materials science. The focus of the papers is on the relationship of the NMR shielding tensor to the geometric and electronic structure of molecules or solids.