Nonparametric Tests Using A Kernel Estimation Method
Download Nonparametric Tests Using A Kernel Estimation Method full books in PDF, epub, and Kindle. Read online free Nonparametric Tests Using A Kernel Estimation Method ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Nonparametric Econometrics
Author | : Qi Li |
Publisher | : Princeton University Press |
Total Pages | : 769 |
Release | : 2011-10-09 |
Genre | : Business & Economics |
ISBN | : 1400841062 |
A comprehensive, up-to-date textbook on nonparametric methods for students and researchers Until now, students and researchers in nonparametric and semiparametric statistics and econometrics have had to turn to the latest journal articles to keep pace with these emerging methods of economic analysis. Nonparametric Econometrics fills a major gap by gathering together the most up-to-date theory and techniques and presenting them in a remarkably straightforward and accessible format. The empirical tests, data, and exercises included in this textbook help make it the ideal introduction for graduate students and an indispensable resource for researchers. Nonparametric and semiparametric methods have attracted a great deal of attention from statisticians in recent decades. While the majority of existing books on the subject operate from the presumption that the underlying data is strictly continuous in nature, more often than not social scientists deal with categorical data—nominal and ordinal—in applied settings. The conventional nonparametric approach to dealing with the presence of discrete variables is acknowledged to be unsatisfactory. This book is tailored to the needs of applied econometricians and social scientists. Qi Li and Jeffrey Racine emphasize nonparametric techniques suited to the rich array of data types—continuous, nominal, and ordinal—within one coherent framework. They also emphasize the properties of nonparametric estimators in the presence of potentially irrelevant variables. Nonparametric Econometrics covers all the material necessary to understand and apply nonparametric methods for real-world problems.
Nonparametric Inference
Author | : Z. Govindarajulu |
Publisher | : World Scientific |
Total Pages | : 692 |
Release | : 2007 |
Genre | : Mathematics |
ISBN | : 981270034X |
This book provides a solid foundation on nonparametric inference for students taking a graduate course in nonparametric statistics and serves as an easily accessible source for researchers in the area.With the exception of some sections requiring familiarity with measure theory, readers with an advanced calculus background will be comfortable with the material.
Applied Nonparametric Econometrics
Author | : Daniel J. Henderson |
Publisher | : Cambridge University Press |
Total Pages | : 381 |
Release | : 2015-01-19 |
Genre | : Business & Economics |
ISBN | : 110701025X |
The majority of empirical research in economics ignores the potential benefits of nonparametric methods, while the majority of advances in nonparametric theory ignores the problems faced in applied econometrics. This book helps bridge this gap between applied economists and theoretical nonparametric econometricians. It discusses in depth, and in terms that someone with only one year of graduate econometrics can understand, basic to advanced nonparametric methods. The analysis starts with density estimation and motivates the procedures through methods that should be familiar to the reader. It then moves on to kernel regression, estimation with discrete data, and advanced methods such as estimation with panel data and instrumental variables models. The book pays close attention to the issues that arise with programming, computing speed, and application. In each chapter, the methods discussed are applied to actual data, paying attention to presentation of results and potential pitfalls.
Multivariate Kernel Smoothing and Its Applications
Author | : José E. Chacón |
Publisher | : CRC Press |
Total Pages | : 249 |
Release | : 2018-05-08 |
Genre | : Mathematics |
ISBN | : 0429939140 |
Kernel smoothing has greatly evolved since its inception to become an essential methodology in the data science tool kit for the 21st century. Its widespread adoption is due to its fundamental role for multivariate exploratory data analysis, as well as the crucial role it plays in composite solutions to complex data challenges. Multivariate Kernel Smoothing and Its Applications offers a comprehensive overview of both aspects. It begins with a thorough exposition of the approaches to achieve the two basic goals of estimating probability density functions and their derivatives. The focus then turns to the applications of these approaches to more complex data analysis goals, many with a geometric/topological flavour, such as level set estimation, clustering (unsupervised learning), principal curves, and feature significance. Other topics, while not direct applications of density (derivative) estimation but sharing many commonalities with the previous settings, include classification (supervised learning), nearest neighbour estimation, and deconvolution for data observed with error. For a data scientist, each chapter contains illustrative Open data examples that are analysed by the most appropriate kernel smoothing method. The emphasis is always placed on an intuitive understanding of the data provided by the accompanying statistical visualisations. For a reader wishing to investigate further the details of their underlying statistical reasoning, a graduated exposition to a unified theoretical framework is provided. The algorithms for efficient software implementation are also discussed. José E. Chacón is an associate professor at the Department of Mathematics of the Universidad de Extremadura in Spain. Tarn Duong is a Senior Data Scientist for a start-up which provides short distance carpooling services in France. Both authors have made important contributions to kernel smoothing research over the last couple of decades.
Smoothing Methods in Statistics
Author | : Jeffrey S. Simonoff |
Publisher | : Springer Science & Business Media |
Total Pages | : 349 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461240263 |
Focussing on applications, this book covers a very broad range, including simple and complex univariate and multivariate density estimation, nonparametric regression estimation, categorical data smoothing, and applications of smoothing to other areas of statistics. It will thus be of particular interest to data analysts, as arguments generally proceed from actual data rather than statistical theory, while the "Background Material" sections will interest statisticians studying the field. Over 750 references allow researchers to find the original sources for more details, and the "Computational Issues" sections provide sources for statistical software that use the methods discussed. Each chapter includes exercises with a heavily computational focus based upon the data sets used in the book, making it equally suitable as a textbook for a course in smoothing.
Density Estimation for Statistics and Data Analysis
Author | : Bernard. W. Silverman |
Publisher | : Routledge |
Total Pages | : 176 |
Release | : 2018-02-19 |
Genre | : Mathematics |
ISBN | : 1351456172 |
Although there has been a surge of interest in density estimation in recent years, much of the published research has been concerned with purely technical matters with insufficient emphasis given to the technique's practical value. Furthermore, the subject has been rather inaccessible to the general statistician. The account presented in this book places emphasis on topics of methodological importance, in the hope that this will facilitate broader practical application of density estimation and also encourage research into relevant theoretical work. The book also provides an introduction to the subject for those with general interests in statistics. The important role of density estimation as a graphical technique is reflected by the inclusion of more than 50 graphs and figures throughout the text. Several contexts in which density estimation can be used are discussed, including the exploration and presentation of data, nonparametric discriminant analysis, cluster analysis, simulation and the bootstrap, bump hunting, projection pursuit, and the estimation of hazard rates and other quantities that depend on the density. This book includes general survey of methods available for density estimation. The Kernel method, both for univariate and multivariate data, is discussed in detail, with particular emphasis on ways of deciding how much to smooth and on computation aspects. Attention is also given to adaptive methods, which smooth to a greater degree in the tails of the distribution, and to methods based on the idea of penalized likelihood.
Nonparametric Methods in Statistics with SAS Applications
Author | : Olga Korosteleva |
Publisher | : CRC Press |
Total Pages | : 193 |
Release | : 2013-08-19 |
Genre | : Mathematics |
ISBN | : 1466580631 |
Designed for a graduate course in applied statistics, Nonparametric Methods in Statistics with SAS Applications teaches students how to apply nonparametric techniques to statistical data. It starts with the tests of hypotheses and moves on to regression modeling, time-to-event analysis, density estimation, and resampling methods.The text begins wit
Nonparametric Density Estimation
Author | : Luc Devroye |
Publisher | : New York ; Toronto : Wiley |
Total Pages | : 376 |
Release | : 1985-01-18 |
Genre | : Mathematics |
ISBN | : |
This book gives a rigorous, systematic treatment of density estimates, their construction, use and analysis with full proofs. It develops L1 theory, rather than the classical L2, showing how L1 exposes fundamental properties of density estimates masked by L2.
Nonparametric Econometric Methods
Author | : Qi Li |
Publisher | : Emerald Group Publishing |
Total Pages | : 570 |
Release | : 2009-12-04 |
Genre | : Business & Economics |
ISBN | : 1849506248 |
Contains a selection of papers presented initially at the 7th Annual Advances in Econometrics Conference held on the LSU campus in Baton Rouge, Louisiana during November 14-16, 2008. This work is suitable for those who wish to familiarize themselves with nonparametric methodology.